1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "gc_interface/collectedHeap.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "interpreter/linkResolver.hpp"
  33 #include "interpreter/templateTable.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/universe.inline.hpp"
  36 #include "oops/constantPoolOop.hpp"
  37 #include "oops/cpCacheOop.hpp"
  38 #include "oops/instanceKlass.hpp"
  39 #include "oops/methodDataOop.hpp"
  40 #include "oops/objArrayKlass.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/symbolOop.hpp"
  43 #include "prims/jvmtiExport.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/compilationPolicy.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/fieldDescriptor.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/interfaceSupport.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/jfieldIDWorkaround.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/synchronizer.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "utilities/events.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "vm_version_x86.hpp"
  61 #endif
  62 #ifdef TARGET_ARCH_sparc
  63 # include "vm_version_sparc.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_zero
  66 # include "vm_version_zero.hpp"
  67 #endif
  68 #ifdef COMPILER2
  69 #include "opto/runtime.hpp"
  70 #endif
  71 
  72 class UnlockFlagSaver {
  73   private:
  74     JavaThread* _thread;
  75     bool _do_not_unlock;
  76   public:
  77     UnlockFlagSaver(JavaThread* t) {
  78       _thread = t;
  79       _do_not_unlock = t->do_not_unlock_if_synchronized();
  80       t->set_do_not_unlock_if_synchronized(false);
  81     }
  82     ~UnlockFlagSaver() {
  83       _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
  84     }
  85 };
  86 
  87 //------------------------------------------------------------------------------------------------------------------------
  88 // State accessors
  89 
  90 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
  91   last_frame(thread).interpreter_frame_set_bcp(bcp);
  92   if (ProfileInterpreter) {
  93     // ProfileTraps uses MDOs independently of ProfileInterpreter.
  94     // That is why we must check both ProfileInterpreter and mdo != NULL.
  95     methodDataOop mdo = last_frame(thread).interpreter_frame_method()->method_data();
  96     if (mdo != NULL) {
  97       NEEDS_CLEANUP;
  98       last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci()));
  99     }
 100   }
 101 }
 102 
 103 //------------------------------------------------------------------------------------------------------------------------
 104 // Constants
 105 
 106 
 107 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
 108   // access constant pool
 109   constantPoolOop pool = method(thread)->constants();
 110   int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc);
 111   constantTag tag = pool->tag_at(index);
 112 
 113   if (tag.is_unresolved_klass() || tag.is_klass()) {
 114     klassOop klass = pool->klass_at(index, CHECK);
 115     oop java_class = klass->klass_part()->java_mirror();
 116     thread->set_vm_result(java_class);
 117   } else {
 118 #ifdef ASSERT
 119     // If we entered this runtime routine, we believed the tag contained
 120     // an unresolved string, an unresolved class or a resolved class.
 121     // However, another thread could have resolved the unresolved string
 122     // or class by the time we go there.
 123     assert(tag.is_unresolved_string()|| tag.is_string(), "expected string");
 124 #endif
 125     oop s_oop = pool->string_at(index, CHECK);
 126     thread->set_vm_result(s_oop);
 127   }
 128 IRT_END
 129 
 130 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
 131   assert(bytecode == Bytecodes::_fast_aldc ||
 132          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
 133   ResourceMark rm(thread);
 134   methodHandle m (thread, method(thread));
 135   Bytecode_loadconstant* ldc = Bytecode_loadconstant_at(m, bci(thread));
 136   oop result = ldc->resolve_constant(THREAD);
 137   DEBUG_ONLY(ConstantPoolCacheEntry* cpce = m->constants()->cache()->entry_at(ldc->cache_index()));
 138   assert(result == cpce->f1(), "expected result for assembly code");
 139 }
 140 IRT_END
 141 
 142 
 143 //------------------------------------------------------------------------------------------------------------------------
 144 // Allocation
 145 
 146 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, constantPoolOopDesc* pool, int index))
 147   klassOop k_oop = pool->klass_at(index, CHECK);
 148   instanceKlassHandle klass (THREAD, k_oop);
 149 
 150   // Make sure we are not instantiating an abstract klass
 151   klass->check_valid_for_instantiation(true, CHECK);
 152 
 153   // Make sure klass is initialized
 154   klass->initialize(CHECK);
 155 
 156   // At this point the class may not be fully initialized
 157   // because of recursive initialization. If it is fully
 158   // initialized & has_finalized is not set, we rewrite
 159   // it into its fast version (Note: no locking is needed
 160   // here since this is an atomic byte write and can be
 161   // done more than once).
 162   //
 163   // Note: In case of classes with has_finalized we don't
 164   //       rewrite since that saves us an extra check in
 165   //       the fast version which then would call the
 166   //       slow version anyway (and do a call back into
 167   //       Java).
 168   //       If we have a breakpoint, then we don't rewrite
 169   //       because the _breakpoint bytecode would be lost.
 170   oop obj = klass->allocate_instance(CHECK);
 171   thread->set_vm_result(obj);
 172 IRT_END
 173 
 174 
 175 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
 176   oop obj = oopFactory::new_typeArray(type, size, CHECK);
 177   thread->set_vm_result(obj);
 178 IRT_END
 179 
 180 
 181 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, constantPoolOopDesc* pool, int index, jint size))
 182   // Note: no oopHandle for pool & klass needed since they are not used
 183   //       anymore after new_objArray() and no GC can happen before.
 184   //       (This may have to change if this code changes!)
 185   klassOop  klass = pool->klass_at(index, CHECK);
 186   objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
 187   thread->set_vm_result(obj);
 188 IRT_END
 189 
 190 
 191 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
 192   // We may want to pass in more arguments - could make this slightly faster
 193   constantPoolOop constants = method(thread)->constants();
 194   int          i = get_index_u2(thread, Bytecodes::_multianewarray);
 195   klassOop klass = constants->klass_at(i, CHECK);
 196   int   nof_dims = number_of_dimensions(thread);
 197   assert(oop(klass)->is_klass(), "not a class");
 198   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
 199 
 200   // We must create an array of jints to pass to multi_allocate.
 201   ResourceMark rm(thread);
 202   const int small_dims = 10;
 203   jint dim_array[small_dims];
 204   jint *dims = &dim_array[0];
 205   if (nof_dims > small_dims) {
 206     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
 207   }
 208   for (int index = 0; index < nof_dims; index++) {
 209     // offset from first_size_address is addressed as local[index]
 210     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
 211     dims[index] = first_size_address[n];
 212   }
 213   oop obj = arrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
 214   thread->set_vm_result(obj);
 215 IRT_END
 216 
 217 
 218 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 219   assert(obj->is_oop(), "must be a valid oop");
 220   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 221   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 222 IRT_END
 223 
 224 
 225 // Quicken instance-of and check-cast bytecodes
 226 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
 227   // Force resolving; quicken the bytecode
 228   int which = get_index_u2(thread, Bytecodes::_checkcast);
 229   constantPoolOop cpool = method(thread)->constants();
 230   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
 231   // program we might have seen an unquick'd bytecode in the interpreter but have another
 232   // thread quicken the bytecode before we get here.
 233   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
 234   klassOop klass = cpool->klass_at(which, CHECK);
 235   thread->set_vm_result(klass);
 236 IRT_END
 237 
 238 
 239 //------------------------------------------------------------------------------------------------------------------------
 240 // Exceptions
 241 
 242 // Assume the compiler is (or will be) interested in this event.
 243 // If necessary, create an MDO to hold the information, and record it.
 244 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
 245   assert(ProfileTraps, "call me only if profiling");
 246   methodHandle trap_method(thread, method(thread));
 247 
 248   if (trap_method.not_null()) {
 249     methodDataHandle trap_mdo(thread, trap_method->method_data());
 250     if (trap_mdo.is_null()) {
 251       methodOopDesc::build_interpreter_method_data(trap_method, THREAD);
 252       if (HAS_PENDING_EXCEPTION) {
 253         assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
 254         CLEAR_PENDING_EXCEPTION;
 255       }
 256       trap_mdo = methodDataHandle(thread, trap_method->method_data());
 257       // and fall through...
 258     }
 259     if (trap_mdo.not_null()) {
 260       // Update per-method count of trap events.  The interpreter
 261       // is updating the MDO to simulate the effect of compiler traps.
 262       int trap_bci = trap_method->bci_from(bcp(thread));
 263       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
 264     }
 265   }
 266 }
 267 
 268 static Handle get_preinitialized_exception(klassOop k, TRAPS) {
 269   // get klass
 270   instanceKlass* klass = instanceKlass::cast(k);
 271   assert(klass->is_initialized(),
 272          "this klass should have been initialized during VM initialization");
 273   // create instance - do not call constructor since we may have no
 274   // (java) stack space left (should assert constructor is empty)
 275   Handle exception;
 276   oop exception_oop = klass->allocate_instance(CHECK_(exception));
 277   exception = Handle(THREAD, exception_oop);
 278   if (StackTraceInThrowable) {
 279     java_lang_Throwable::fill_in_stack_trace(exception);
 280   }
 281   return exception;
 282 }
 283 
 284 // Special handling for stack overflow: since we don't have any (java) stack
 285 // space left we use the pre-allocated & pre-initialized StackOverflowError
 286 // klass to create an stack overflow error instance.  We do not call its
 287 // constructor for the same reason (it is empty, anyway).
 288 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
 289   Handle exception = get_preinitialized_exception(
 290                                  SystemDictionary::StackOverflowError_klass(),
 291                                  CHECK);
 292   THROW_HANDLE(exception);
 293 IRT_END
 294 
 295 
 296 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
 297   // lookup exception klass
 298   symbolHandle s = oopFactory::new_symbol_handle(name, CHECK);
 299   if (ProfileTraps) {
 300     if (s == vmSymbols::java_lang_ArithmeticException()) {
 301       note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
 302     } else if (s == vmSymbols::java_lang_NullPointerException()) {
 303       note_trap(thread, Deoptimization::Reason_null_check, CHECK);
 304     }
 305   }
 306   // create exception
 307   Handle exception = Exceptions::new_exception(thread, s(), message);
 308   thread->set_vm_result(exception());
 309 IRT_END
 310 
 311 
 312 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
 313   ResourceMark rm(thread);
 314   const char* klass_name = Klass::cast(obj->klass())->external_name();
 315   // lookup exception klass
 316   symbolHandle s = oopFactory::new_symbol_handle(name, CHECK);
 317   if (ProfileTraps) {
 318     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 319   }
 320   // create exception, with klass name as detail message
 321   Handle exception = Exceptions::new_exception(thread, s(), klass_name);
 322   thread->set_vm_result(exception());
 323 IRT_END
 324 
 325 
 326 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
 327   char message[jintAsStringSize];
 328   // lookup exception klass
 329   symbolHandle s = oopFactory::new_symbol_handle(name, CHECK);
 330   if (ProfileTraps) {
 331     note_trap(thread, Deoptimization::Reason_range_check, CHECK);
 332   }
 333   // create exception
 334   sprintf(message, "%d", index);
 335   THROW_MSG(s(), message);
 336 IRT_END
 337 
 338 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
 339   JavaThread* thread, oopDesc* obj))
 340 
 341   ResourceMark rm(thread);
 342   char* message = SharedRuntime::generate_class_cast_message(
 343     thread, Klass::cast(obj->klass())->external_name());
 344 
 345   if (ProfileTraps) {
 346     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 347   }
 348 
 349   // create exception
 350   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
 351 IRT_END
 352 
 353 // required can be either a MethodType, or a Class (for a single argument)
 354 // actual (if not null) can be either a MethodHandle, or an arbitrary value (for a single argument)
 355 IRT_ENTRY(void, InterpreterRuntime::throw_WrongMethodTypeException(JavaThread* thread,
 356                                                                    oopDesc* required,
 357                                                                    oopDesc* actual)) {
 358   ResourceMark rm(thread);
 359   char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual);
 360 
 361   if (ProfileTraps) {
 362     note_trap(thread, Deoptimization::Reason_constraint, CHECK);
 363   }
 364 
 365   // create exception
 366   THROW_MSG(vmSymbols::java_dyn_WrongMethodTypeException(), message);
 367 }
 368 IRT_END
 369 
 370 
 371 
 372 // exception_handler_for_exception(...) returns the continuation address,
 373 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
 374 // The exception oop is returned to make sure it is preserved over GC (it
 375 // is only on the stack if the exception was thrown explicitly via athrow).
 376 // During this operation, the expression stack contains the values for the
 377 // bci where the exception happened. If the exception was propagated back
 378 // from a call, the expression stack contains the values for the bci at the
 379 // invoke w/o arguments (i.e., as if one were inside the call).
 380 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
 381 
 382   Handle             h_exception(thread, exception);
 383   methodHandle       h_method   (thread, method(thread));
 384   constantPoolHandle h_constants(thread, h_method->constants());
 385   typeArrayHandle    h_extable  (thread, h_method->exception_table());
 386   bool               should_repeat;
 387   int                handler_bci;
 388   int                current_bci = bci(thread);
 389 
 390   // Need to do this check first since when _do_not_unlock_if_synchronized
 391   // is set, we don't want to trigger any classloading which may make calls
 392   // into java, or surprisingly find a matching exception handler for bci 0
 393   // since at this moment the method hasn't been "officially" entered yet.
 394   if (thread->do_not_unlock_if_synchronized()) {
 395     ResourceMark rm;
 396     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
 397     thread->set_vm_result(exception);
 398 #ifdef CC_INTERP
 399     return (address) -1;
 400 #else
 401     return Interpreter::remove_activation_entry();
 402 #endif
 403   }
 404 
 405   do {
 406     should_repeat = false;
 407 
 408     // assertions
 409 #ifdef ASSERT
 410     assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
 411     assert(h_exception->is_oop(), "just checking");
 412     // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 413     if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
 414       if (ExitVMOnVerifyError) vm_exit(-1);
 415       ShouldNotReachHere();
 416     }
 417 #endif
 418 
 419     // tracing
 420     if (TraceExceptions) {
 421       ttyLocker ttyl;
 422       ResourceMark rm(thread);
 423       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", h_exception->print_value_string(), (address)h_exception());
 424       tty->print_cr(" thrown in interpreter method <%s>", h_method->print_value_string());
 425       tty->print_cr(" at bci %d for thread " INTPTR_FORMAT, current_bci, thread);
 426     }
 427 // Don't go paging in something which won't be used.
 428 //     else if (h_extable->length() == 0) {
 429 //       // disabled for now - interpreter is not using shortcut yet
 430 //       // (shortcut is not to call runtime if we have no exception handlers)
 431 //       // warning("performance bug: should not call runtime if method has no exception handlers");
 432 //     }
 433     // for AbortVMOnException flag
 434     NOT_PRODUCT(Exceptions::debug_check_abort(h_exception));
 435 
 436     // exception handler lookup
 437     KlassHandle h_klass(THREAD, h_exception->klass());
 438     handler_bci = h_method->fast_exception_handler_bci_for(h_klass, current_bci, THREAD);
 439     if (HAS_PENDING_EXCEPTION) {
 440       // We threw an exception while trying to find the exception handler.
 441       // Transfer the new exception to the exception handle which will
 442       // be set into thread local storage, and do another lookup for an
 443       // exception handler for this exception, this time starting at the
 444       // BCI of the exception handler which caused the exception to be
 445       // thrown (bug 4307310).
 446       h_exception = Handle(THREAD, PENDING_EXCEPTION);
 447       CLEAR_PENDING_EXCEPTION;
 448       if (handler_bci >= 0) {
 449         current_bci = handler_bci;
 450         should_repeat = true;
 451       }
 452     }
 453   } while (should_repeat == true);
 454 
 455   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
 456   // time throw or a stack unwinding throw and accordingly notify the debugger
 457   if (JvmtiExport::can_post_on_exceptions()) {
 458     JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception());
 459   }
 460 
 461 #ifdef CC_INTERP
 462   address continuation = (address)(intptr_t) handler_bci;
 463 #else
 464   address continuation = NULL;
 465 #endif
 466   address handler_pc = NULL;
 467   if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
 468     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
 469     // handler in this method, or (b) after a stack overflow there is not yet
 470     // enough stack space available to reprotect the stack.
 471 #ifndef CC_INTERP
 472     continuation = Interpreter::remove_activation_entry();
 473 #endif
 474     // Count this for compilation purposes
 475     h_method->interpreter_throwout_increment();
 476   } else {
 477     // handler in this method => change bci/bcp to handler bci/bcp and continue there
 478     handler_pc = h_method->code_base() + handler_bci;
 479 #ifndef CC_INTERP
 480     set_bcp_and_mdp(handler_pc, thread);
 481     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
 482 #endif
 483   }
 484   // notify debugger of an exception catch
 485   // (this is good for exceptions caught in native methods as well)
 486   if (JvmtiExport::can_post_on_exceptions()) {
 487     JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
 488   }
 489 
 490   thread->set_vm_result(h_exception());
 491   return continuation;
 492 IRT_END
 493 
 494 
 495 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
 496   assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
 497   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
 498 IRT_END
 499 
 500 
 501 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
 502   THROW(vmSymbols::java_lang_AbstractMethodError());
 503 IRT_END
 504 
 505 
 506 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 507   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
 508 IRT_END
 509 
 510 
 511 //------------------------------------------------------------------------------------------------------------------------
 512 // Fields
 513 //
 514 
 515 IRT_ENTRY(void, InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode))
 516   // resolve field
 517   FieldAccessInfo info;
 518   constantPoolHandle pool(thread, method(thread)->constants());
 519   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
 520 
 521   {
 522     JvmtiHideSingleStepping jhss(thread);
 523     LinkResolver::resolve_field(info, pool, get_index_u2_cpcache(thread, bytecode),
 524                                 bytecode, false, CHECK);
 525   } // end JvmtiHideSingleStepping
 526 
 527   // check if link resolution caused cpCache to be updated
 528   if (already_resolved(thread)) return;
 529 
 530   // compute auxiliary field attributes
 531   TosState state  = as_TosState(info.field_type());
 532 
 533   // We need to delay resolving put instructions on final fields
 534   // until we actually invoke one. This is required so we throw
 535   // exceptions at the correct place. If we do not resolve completely
 536   // in the current pass, leaving the put_code set to zero will
 537   // cause the next put instruction to reresolve.
 538   bool is_put = (bytecode == Bytecodes::_putfield ||
 539                  bytecode == Bytecodes::_putstatic);
 540   Bytecodes::Code put_code = (Bytecodes::Code)0;
 541 
 542   // We also need to delay resolving getstatic instructions until the
 543   // class is intitialized.  This is required so that access to the static
 544   // field will call the initialization function every time until the class
 545   // is completely initialized ala. in 2.17.5 in JVM Specification.
 546   instanceKlass *klass = instanceKlass::cast(info.klass()->as_klassOop());
 547   bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) &&
 548                                !klass->is_initialized());
 549   Bytecodes::Code get_code = (Bytecodes::Code)0;
 550 
 551 
 552   if (!uninitialized_static) {
 553     get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
 554     if (is_put || !info.access_flags().is_final()) {
 555       put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
 556     }
 557   }
 558 
 559   cache_entry(thread)->set_field(
 560     get_code,
 561     put_code,
 562     info.klass(),
 563     info.field_index(),
 564     info.field_offset(),
 565     state,
 566     info.access_flags().is_final(),
 567     info.access_flags().is_volatile()
 568   );
 569 IRT_END
 570 
 571 
 572 //------------------------------------------------------------------------------------------------------------------------
 573 // Synchronization
 574 //
 575 // The interpreter's synchronization code is factored out so that it can
 576 // be shared by method invocation and synchronized blocks.
 577 //%note synchronization_3
 578 
 579 static void trace_locking(Handle& h_locking_obj, bool is_locking) {
 580   ObjectSynchronizer::trace_locking(h_locking_obj, false, true, is_locking);
 581 }
 582 
 583 
 584 //%note monitor_1
 585 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
 586 #ifdef ASSERT
 587   thread->last_frame().interpreter_frame_verify_monitor(elem);
 588 #endif
 589   if (PrintBiasedLockingStatistics) {
 590     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 591   }
 592   Handle h_obj(thread, elem->obj());
 593   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 594          "must be NULL or an object");
 595   if (UseBiasedLocking) {
 596     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 597     ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
 598   } else {
 599     ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
 600   }
 601   assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
 602          "must be NULL or an object");
 603 #ifdef ASSERT
 604   thread->last_frame().interpreter_frame_verify_monitor(elem);
 605 #endif
 606 IRT_END
 607 
 608 
 609 //%note monitor_1
 610 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
 611 #ifdef ASSERT
 612   thread->last_frame().interpreter_frame_verify_monitor(elem);
 613 #endif
 614   Handle h_obj(thread, elem->obj());
 615   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 616          "must be NULL or an object");
 617   if (elem == NULL || h_obj()->is_unlocked()) {
 618     THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 619   }
 620   ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
 621   // Free entry. This must be done here, since a pending exception might be installed on
 622   // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
 623   elem->set_obj(NULL);
 624 #ifdef ASSERT
 625   thread->last_frame().interpreter_frame_verify_monitor(elem);
 626 #endif
 627 IRT_END
 628 
 629 
 630 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
 631   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 632 IRT_END
 633 
 634 
 635 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
 636   // Returns an illegal exception to install into the current thread. The
 637   // pending_exception flag is cleared so normal exception handling does not
 638   // trigger. Any current installed exception will be overwritten. This
 639   // method will be called during an exception unwind.
 640 
 641   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
 642   Handle exception(thread, thread->vm_result());
 643   assert(exception() != NULL, "vm result should be set");
 644   thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
 645   if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
 646     exception = get_preinitialized_exception(
 647                        SystemDictionary::IllegalMonitorStateException_klass(),
 648                        CATCH);
 649   }
 650   thread->set_vm_result(exception());
 651 IRT_END
 652 
 653 
 654 //------------------------------------------------------------------------------------------------------------------------
 655 // Invokes
 656 
 657 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, methodOopDesc* method, address bcp))
 658   return method->orig_bytecode_at(method->bci_from(bcp));
 659 IRT_END
 660 
 661 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, methodOopDesc* method, address bcp, Bytecodes::Code new_code))
 662   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
 663 IRT_END
 664 
 665 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, methodOopDesc* method, address bcp))
 666   JvmtiExport::post_raw_breakpoint(thread, method, bcp);
 667 IRT_END
 668 
 669 IRT_ENTRY(void, InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode))
 670   // extract receiver from the outgoing argument list if necessary
 671   Handle receiver(thread, NULL);
 672   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) {
 673     ResourceMark rm(thread);
 674     methodHandle m (thread, method(thread));
 675     Bytecode_invoke* call = Bytecode_invoke_at(m, bci(thread));
 676     symbolHandle signature (thread, call->signature());
 677     receiver = Handle(thread,
 678                   thread->last_frame().interpreter_callee_receiver(signature));
 679     assert(Universe::heap()->is_in_reserved_or_null(receiver()),
 680            "sanity check");
 681     assert(receiver.is_null() ||
 682            Universe::heap()->is_in_reserved(receiver->klass()),
 683            "sanity check");
 684   }
 685 
 686   // resolve method
 687   CallInfo info;
 688   constantPoolHandle pool(thread, method(thread)->constants());
 689 
 690   {
 691     JvmtiHideSingleStepping jhss(thread);
 692     LinkResolver::resolve_invoke(info, receiver, pool,
 693                                  get_index_u2_cpcache(thread, bytecode), bytecode, CHECK);
 694     if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 695       int retry_count = 0;
 696       while (info.resolved_method()->is_old()) {
 697         // It is very unlikely that method is redefined more than 100 times
 698         // in the middle of resolve. If it is looping here more than 100 times
 699         // means then there could be a bug here.
 700         guarantee((retry_count++ < 100),
 701                   "Could not resolve to latest version of redefined method");
 702         // method is redefined in the middle of resolve so re-try.
 703         LinkResolver::resolve_invoke(info, receiver, pool,
 704                                      get_index_u2_cpcache(thread, bytecode), bytecode, CHECK);
 705       }
 706     }
 707   } // end JvmtiHideSingleStepping
 708 
 709   // check if link resolution caused cpCache to be updated
 710   if (already_resolved(thread)) return;
 711 
 712   if (bytecode == Bytecodes::_invokeinterface) {
 713 
 714     if (TraceItables && Verbose) {
 715       ResourceMark rm(thread);
 716       tty->print_cr("Resolving: klass: %s to method: %s", info.resolved_klass()->name()->as_C_string(), info.resolved_method()->name()->as_C_string());
 717     }
 718     if (info.resolved_method()->method_holder() ==
 719                                             SystemDictionary::Object_klass()) {
 720       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
 721       // (see also cpCacheOop.cpp for details)
 722       methodHandle rm = info.resolved_method();
 723       assert(rm->is_final() || info.has_vtable_index(),
 724              "should have been set already");
 725       cache_entry(thread)->set_method(bytecode, rm, info.vtable_index());
 726     } else {
 727       // Setup itable entry
 728       int index = klassItable::compute_itable_index(info.resolved_method()());
 729       cache_entry(thread)->set_interface_call(info.resolved_method(), index);
 730     }
 731   } else {
 732     cache_entry(thread)->set_method(
 733       bytecode,
 734       info.resolved_method(),
 735       info.vtable_index());
 736   }
 737 IRT_END
 738 
 739 
 740 // First time execution:  Resolve symbols, create a permanent CallSite object.
 741 IRT_ENTRY(void, InterpreterRuntime::resolve_invokedynamic(JavaThread* thread)) {
 742   ResourceMark rm(thread);
 743 
 744   assert(EnableInvokeDynamic, "");
 745 
 746   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
 747 
 748   methodHandle caller_method(thread, method(thread));
 749 
 750   constantPoolHandle pool(thread, caller_method->constants());
 751   pool->set_invokedynamic();    // mark header to flag active call sites
 752 
 753   int caller_bci = 0;
 754   int site_index = 0;
 755   { address caller_bcp = bcp(thread);
 756     caller_bci = caller_method->bci_from(caller_bcp);
 757     site_index = Bytes::get_native_u4(caller_bcp+1);
 758   }
 759   assert(site_index == InterpreterRuntime::bytecode(thread)->get_index_u4(bytecode), "");
 760   assert(constantPoolCacheOopDesc::is_secondary_index(site_index), "proper format");
 761   // there is a second CPC entries that is of interest; it caches signature info:
 762   int main_index = pool->cache()->secondary_entry_at(site_index)->main_entry_index();
 763   int pool_index = pool->cache()->entry_at(main_index)->constant_pool_index();
 764 
 765   // first resolve the signature to a MH.invoke methodOop
 766   if (!pool->cache()->entry_at(main_index)->is_resolved(bytecode)) {
 767     JvmtiHideSingleStepping jhss(thread);
 768     CallInfo callinfo;
 769     LinkResolver::resolve_invoke(callinfo, Handle(), pool,
 770                                  site_index, bytecode, CHECK);
 771     // The main entry corresponds to a JVM_CONSTANT_InvokeDynamic, and serves
 772     // as a common reference point for all invokedynamic call sites with
 773     // that exact call descriptor.  We will link it in the CP cache exactly
 774     // as if it were an invokevirtual of MethodHandle.invoke.
 775     pool->cache()->entry_at(main_index)->set_method(
 776       bytecode,
 777       callinfo.resolved_method(),
 778       callinfo.vtable_index());
 779   }
 780 
 781   // The method (f2 entry) of the main entry is the MH.invoke for the
 782   // invokedynamic target call signature.
 783   oop f1_value = pool->cache()->entry_at(main_index)->f1();
 784   methodHandle signature_invoker(THREAD, (methodOop) f1_value);
 785   assert(signature_invoker.not_null() && signature_invoker->is_method() && signature_invoker->is_method_handle_invoke(),
 786          "correct result from LinkResolver::resolve_invokedynamic");
 787 
 788   Handle info;  // optional argument(s) in JVM_CONSTANT_InvokeDynamic
 789   Handle bootm = SystemDictionary::find_bootstrap_method(caller_method, caller_bci,
 790                                                          main_index, info, CHECK);
 791   if (!java_dyn_MethodHandle::is_instance(bootm())) {
 792     THROW_MSG(vmSymbols::java_lang_IllegalStateException(),
 793               "no bootstrap method found for invokedynamic");
 794   }
 795 
 796   // Short circuit if CallSite has been bound already:
 797   if (!pool->cache()->secondary_entry_at(site_index)->is_f1_null())
 798     return;
 799 
 800   symbolHandle call_site_name(THREAD, pool->name_ref_at(site_index));
 801 
 802   Handle call_site
 803     = SystemDictionary::make_dynamic_call_site(bootm,
 804                                                // Callee information:
 805                                                call_site_name,
 806                                                signature_invoker,
 807                                                info,
 808                                                // Caller information:
 809                                                caller_method,
 810                                                caller_bci,
 811                                                CHECK);
 812 
 813   // In the secondary entry, the f1 field is the call site, and the f2 (index)
 814   // field is some data about the invoke site.  Currently, it is just the BCI.
 815   // Later, it might be changed to help manage inlining dependencies.
 816   pool->cache()->secondary_entry_at(site_index)->set_dynamic_call(call_site, signature_invoker);
 817 }
 818 IRT_END
 819 
 820 
 821 //------------------------------------------------------------------------------------------------------------------------
 822 // Miscellaneous
 823 
 824 
 825 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
 826   nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
 827   assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
 828   if (branch_bcp != NULL && nm != NULL) {
 829     // This was a successful request for an OSR nmethod.  Because
 830     // frequency_counter_overflow_inner ends with a safepoint check,
 831     // nm could have been unloaded so look it up again.  It's unsafe
 832     // to examine nm directly since it might have been freed and used
 833     // for something else.
 834     frame fr = thread->last_frame();
 835     methodOop method =  fr.interpreter_frame_method();
 836     int bci = method->bci_from(fr.interpreter_frame_bcp());
 837     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
 838   }
 839   return nm;
 840 }
 841 
 842 IRT_ENTRY(nmethod*,
 843           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
 844   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 845   // flag, in case this method triggers classloading which will call into Java.
 846   UnlockFlagSaver fs(thread);
 847 
 848   frame fr = thread->last_frame();
 849   assert(fr.is_interpreted_frame(), "must come from interpreter");
 850   methodHandle method(thread, fr.interpreter_frame_method());
 851   const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
 852   const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci;
 853 
 854   nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, thread);
 855 
 856   if (osr_nm != NULL) {
 857     // We may need to do on-stack replacement which requires that no
 858     // monitors in the activation are biased because their
 859     // BasicObjectLocks will need to migrate during OSR. Force
 860     // unbiasing of all monitors in the activation now (even though
 861     // the OSR nmethod might be invalidated) because we don't have a
 862     // safepoint opportunity later once the migration begins.
 863     if (UseBiasedLocking) {
 864       ResourceMark rm;
 865       GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
 866       for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
 867            kptr < fr.interpreter_frame_monitor_begin();
 868            kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
 869         if( kptr->obj() != NULL ) {
 870           objects_to_revoke->append(Handle(THREAD, kptr->obj()));
 871         }
 872       }
 873       BiasedLocking::revoke(objects_to_revoke);
 874     }
 875   }
 876   return osr_nm;
 877 IRT_END
 878 
 879 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(methodOopDesc* method, address cur_bcp))
 880   assert(ProfileInterpreter, "must be profiling interpreter");
 881   int bci = method->bci_from(cur_bcp);
 882   methodDataOop mdo = method->method_data();
 883   if (mdo == NULL)  return 0;
 884   return mdo->bci_to_di(bci);
 885 IRT_END
 886 
 887 IRT_ENTRY(jint, InterpreterRuntime::profile_method(JavaThread* thread, address cur_bcp))
 888   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 889   // flag, in case this method triggers classloading which will call into Java.
 890   UnlockFlagSaver fs(thread);
 891 
 892   assert(ProfileInterpreter, "must be profiling interpreter");
 893   frame fr = thread->last_frame();
 894   assert(fr.is_interpreted_frame(), "must come from interpreter");
 895   methodHandle method(thread, fr.interpreter_frame_method());
 896   int bci = method->bci_from(cur_bcp);
 897   methodOopDesc::build_interpreter_method_data(method, THREAD);
 898   if (HAS_PENDING_EXCEPTION) {
 899     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
 900     CLEAR_PENDING_EXCEPTION;
 901     // and fall through...
 902   }
 903   methodDataOop mdo = method->method_data();
 904   if (mdo == NULL)  return 0;
 905   return mdo->bci_to_di(bci);
 906 IRT_END
 907 
 908 
 909 #ifdef ASSERT
 910 IRT_LEAF(void, InterpreterRuntime::verify_mdp(methodOopDesc* method, address bcp, address mdp))
 911   assert(ProfileInterpreter, "must be profiling interpreter");
 912 
 913   methodDataOop mdo = method->method_data();
 914   assert(mdo != NULL, "must not be null");
 915 
 916   int bci = method->bci_from(bcp);
 917 
 918   address mdp2 = mdo->bci_to_dp(bci);
 919   if (mdp != mdp2) {
 920     ResourceMark rm;
 921     ResetNoHandleMark rnm; // In a LEAF entry.
 922     HandleMark hm;
 923     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
 924     int current_di = mdo->dp_to_di(mdp);
 925     int expected_di  = mdo->dp_to_di(mdp2);
 926     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
 927     int expected_approx_bci = mdo->data_at(expected_di)->bci();
 928     int approx_bci = -1;
 929     if (current_di >= 0) {
 930       approx_bci = mdo->data_at(current_di)->bci();
 931     }
 932     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
 933     mdo->print_on(tty);
 934     method->print_codes();
 935   }
 936   assert(mdp == mdp2, "wrong mdp");
 937 IRT_END
 938 #endif // ASSERT
 939 
 940 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
 941   assert(ProfileInterpreter, "must be profiling interpreter");
 942   ResourceMark rm(thread);
 943   HandleMark hm(thread);
 944   frame fr = thread->last_frame();
 945   assert(fr.is_interpreted_frame(), "must come from interpreter");
 946   methodDataHandle h_mdo(thread, fr.interpreter_frame_method()->method_data());
 947 
 948   // Grab a lock to ensure atomic access to setting the return bci and
 949   // the displacement.  This can block and GC, invalidating all naked oops.
 950   MutexLocker ml(RetData_lock);
 951 
 952   // ProfileData is essentially a wrapper around a derived oop, so we
 953   // need to take the lock before making any ProfileData structures.
 954   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp()));
 955   RetData* rdata = data->as_RetData();
 956   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
 957   fr.interpreter_frame_set_mdp(new_mdp);
 958 IRT_END
 959 
 960 
 961 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
 962   // We used to need an explict preserve_arguments here for invoke bytecodes. However,
 963   // stack traversal automatically takes care of preserving arguments for invoke, so
 964   // this is no longer needed.
 965 
 966   // IRT_END does an implicit safepoint check, hence we are guaranteed to block
 967   // if this is called during a safepoint
 968 
 969   if (JvmtiExport::should_post_single_step()) {
 970     // We are called during regular safepoints and when the VM is
 971     // single stepping. If any thread is marked for single stepping,
 972     // then we may have JVMTI work to do.
 973     JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread));
 974   }
 975 IRT_END
 976 
 977 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
 978 ConstantPoolCacheEntry *cp_entry))
 979 
 980   // check the access_flags for the field in the klass
 981   instanceKlass* ik = instanceKlass::cast((klassOop)cp_entry->f1());
 982   typeArrayOop fields = ik->fields();
 983   int index = cp_entry->field_index();
 984   assert(index < fields->length(), "holders field index is out of range");
 985   // bail out if field accesses are not watched
 986   if ((fields->ushort_at(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
 987 
 988   switch(cp_entry->flag_state()) {
 989     case btos:    // fall through
 990     case ctos:    // fall through
 991     case stos:    // fall through
 992     case itos:    // fall through
 993     case ftos:    // fall through
 994     case ltos:    // fall through
 995     case dtos:    // fall through
 996     case atos: break;
 997     default: ShouldNotReachHere(); return;
 998   }
 999   bool is_static = (obj == NULL);
1000   HandleMark hm(thread);
1001 
1002   Handle h_obj;
1003   if (!is_static) {
1004     // non-static field accessors have an object, but we need a handle
1005     h_obj = Handle(thread, obj);
1006   }
1007   instanceKlassHandle h_cp_entry_f1(thread, (klassOop)cp_entry->f1());
1008   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2(), is_static);
1009   JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid);
1010 IRT_END
1011 
1012 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
1013   oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
1014 
1015   klassOop k = (klassOop)cp_entry->f1();
1016 
1017   // check the access_flags for the field in the klass
1018   instanceKlass* ik = instanceKlass::cast(k);
1019   typeArrayOop fields = ik->fields();
1020   int index = cp_entry->field_index();
1021   assert(index < fields->length(), "holders field index is out of range");
1022   // bail out if field modifications are not watched
1023   if ((fields->ushort_at(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
1024 
1025   char sig_type = '\0';
1026 
1027   switch(cp_entry->flag_state()) {
1028     case btos: sig_type = 'Z'; break;
1029     case ctos: sig_type = 'C'; break;
1030     case stos: sig_type = 'S'; break;
1031     case itos: sig_type = 'I'; break;
1032     case ftos: sig_type = 'F'; break;
1033     case atos: sig_type = 'L'; break;
1034     case ltos: sig_type = 'J'; break;
1035     case dtos: sig_type = 'D'; break;
1036     default:  ShouldNotReachHere(); return;
1037   }
1038   bool is_static = (obj == NULL);
1039 
1040   HandleMark hm(thread);
1041   instanceKlassHandle h_klass(thread, k);
1042   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2(), is_static);
1043   jvalue fvalue;
1044 #ifdef _LP64
1045   fvalue = *value;
1046 #else
1047   // Long/double values are stored unaligned and also noncontiguously with
1048   // tagged stacks.  We can't just do a simple assignment even in the non-
1049   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1050   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1051   // We assume that the two halves of longs/doubles are stored in interpreter
1052   // stack slots in platform-endian order.
1053   jlong_accessor u;
1054   jint* newval = (jint*)value;
1055   u.words[0] = newval[0];
1056   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1057   fvalue.j = u.long_value;
1058 #endif // _LP64
1059 
1060   Handle h_obj;
1061   if (!is_static) {
1062     // non-static field accessors have an object, but we need a handle
1063     h_obj = Handle(thread, obj);
1064   }
1065 
1066   JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj,
1067                                            fid, sig_type, &fvalue);
1068 IRT_END
1069 
1070 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
1071   JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1072 IRT_END
1073 
1074 
1075 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
1076   JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1077 IRT_END
1078 
1079 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1080 {
1081   return (Interpreter::contains(pc) ? 1 : 0);
1082 }
1083 IRT_END
1084 
1085 
1086 // Implementation of SignatureHandlerLibrary
1087 
1088 address SignatureHandlerLibrary::set_handler_blob() {
1089   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1090   if (handler_blob == NULL) {
1091     return NULL;
1092   }
1093   address handler = handler_blob->code_begin();
1094   _handler_blob = handler_blob;
1095   _handler = handler;
1096   return handler;
1097 }
1098 
1099 void SignatureHandlerLibrary::initialize() {
1100   if (_fingerprints != NULL) {
1101     return;
1102   }
1103   if (set_handler_blob() == NULL) {
1104     vm_exit_out_of_memory(blob_size, "native signature handlers");
1105   }
1106 
1107   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1108                                       SignatureHandlerLibrary::buffer_size);
1109   _buffer = bb->code_begin();
1110 
1111   _fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true);
1112   _handlers     = new(ResourceObj::C_HEAP)GrowableArray<address>(32, true);
1113 }
1114 
1115 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1116   address handler   = _handler;
1117   int     insts_size = buffer->pure_insts_size();
1118   if (handler + insts_size > _handler_blob->code_end()) {
1119     // get a new handler blob
1120     handler = set_handler_blob();
1121   }
1122   if (handler != NULL) {
1123     memcpy(handler, buffer->insts_begin(), insts_size);
1124     pd_set_handler(handler);
1125     ICache::invalidate_range(handler, insts_size);
1126     _handler = handler + insts_size;
1127   }
1128   return handler;
1129 }
1130 
1131 void SignatureHandlerLibrary::add(methodHandle method) {
1132   if (method->signature_handler() == NULL) {
1133     // use slow signature handler if we can't do better
1134     int handler_index = -1;
1135     // check if we can use customized (fast) signature handler
1136     if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
1137       // use customized signature handler
1138       MutexLocker mu(SignatureHandlerLibrary_lock);
1139       // make sure data structure is initialized
1140       initialize();
1141       // lookup method signature's fingerprint
1142       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1143       handler_index = _fingerprints->find(fingerprint);
1144       // create handler if necessary
1145       if (handler_index < 0) {
1146         ResourceMark rm;
1147         ptrdiff_t align_offset = (address)
1148           round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer;
1149         CodeBuffer buffer((address)(_buffer + align_offset),
1150                           SignatureHandlerLibrary::buffer_size - align_offset);
1151         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1152         // copy into code heap
1153         address handler = set_handler(&buffer);
1154         if (handler == NULL) {
1155           // use slow signature handler
1156         } else {
1157           // debugging suppport
1158           if (PrintSignatureHandlers) {
1159             tty->cr();
1160             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1161                           _handlers->length(),
1162                           (method->is_static() ? "static" : "receiver"),
1163                           method->name_and_sig_as_C_string(),
1164                           fingerprint,
1165                           buffer.insts_size());
1166             Disassembler::decode(handler, handler + buffer.insts_size());
1167 #ifndef PRODUCT
1168             tty->print_cr(" --- associated result handler ---");
1169             address rh_begin = Interpreter::result_handler(method()->result_type());
1170             address rh_end = rh_begin;
1171             while (*(int*)rh_end != 0) {
1172               rh_end += sizeof(int);
1173             }
1174             Disassembler::decode(rh_begin, rh_end);
1175 #endif
1176           }
1177           // add handler to library
1178           _fingerprints->append(fingerprint);
1179           _handlers->append(handler);
1180           // set handler index
1181           assert(_fingerprints->length() == _handlers->length(), "sanity check");
1182           handler_index = _fingerprints->length() - 1;
1183         }
1184       }
1185     } else {
1186       CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
1187     }
1188     if (handler_index < 0) {
1189       // use generic signature handler
1190       method->set_signature_handler(Interpreter::slow_signature_handler());
1191     } else {
1192       // set handler
1193       method->set_signature_handler(_handlers->at(handler_index));
1194     }
1195   }
1196 #ifdef ASSERT
1197   {
1198     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1199     // in any way if accessed from multiple threads. To avoid races with another
1200     // thread which may change the arrays in the above, mutex protected block, we
1201     // have to protect this read access here with the same mutex as well!
1202     MutexLocker mu(SignatureHandlerLibrary_lock);
1203     assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1204            _handlers->find(method->signature_handler()) == _fingerprints->find(Fingerprinter(method).fingerprint()),
1205            "sanity check");
1206   }
1207 #endif
1208 }
1209 
1210 
1211 BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
1212 address                  SignatureHandlerLibrary::_handler      = NULL;
1213 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
1214 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
1215 address                  SignatureHandlerLibrary::_buffer       = NULL;
1216 
1217 
1218 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, methodOopDesc* method))
1219   methodHandle m(thread, method);
1220   assert(m->is_native(), "sanity check");
1221   // lookup native function entry point if it doesn't exist
1222   bool in_base_library;
1223   if (!m->has_native_function()) {
1224     NativeLookup::lookup(m, in_base_library, CHECK);
1225   }
1226   // make sure signature handler is installed
1227   SignatureHandlerLibrary::add(m);
1228   // The interpreter entry point checks the signature handler first,
1229   // before trying to fetch the native entry point and klass mirror.
1230   // We must set the signature handler last, so that multiple processors
1231   // preparing the same method will be sure to see non-null entry & mirror.
1232 IRT_END
1233 
1234 #if defined(IA32) || defined(AMD64)
1235 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
1236   if (src_address == dest_address) {
1237     return;
1238   }
1239   ResetNoHandleMark rnm; // In a LEAF entry.
1240   HandleMark hm;
1241   ResourceMark rm;
1242   frame fr = thread->last_frame();
1243   assert(fr.is_interpreted_frame(), "");
1244   jint bci = fr.interpreter_frame_bci();
1245   methodHandle mh(thread, fr.interpreter_frame_method());
1246   Bytecode_invoke* invoke = Bytecode_invoke_at(mh, bci);
1247   ArgumentSizeComputer asc(invoke->signature());
1248   int size_of_arguments = (asc.size() + (invoke->has_receiver() ? 1 : 0)); // receiver
1249   Copy::conjoint_jbytes(src_address, dest_address,
1250                        size_of_arguments * Interpreter::stackElementSize);
1251 IRT_END
1252 #endif