1 /*
2 * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "classfile/systemDictionary.hpp"
27 #include "classfile/vmSymbols.hpp"
28 #include "code/compiledIC.hpp"
29 #include "code/icBuffer.hpp"
30 #include "code/nmethod.hpp"
31 #include "code/pcDesc.hpp"
32 #include "code/scopeDesc.hpp"
33 #include "code/vtableStubs.hpp"
34 #include "compiler/compileBroker.hpp"
35 #include "compiler/compilerOracle.hpp"
36 #include "compiler/oopMap.hpp"
37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
38 #include "gc_implementation/g1/heapRegion.hpp"
39 #include "gc_interface/collectedHeap.hpp"
40 #include "interpreter/bytecode.hpp"
41 #include "interpreter/interpreter.hpp"
42 #include "interpreter/linkResolver.hpp"
43 #include "memory/barrierSet.hpp"
44 #include "memory/gcLocker.inline.hpp"
45 #include "memory/oopFactory.hpp"
46 #include "oops/objArrayKlass.hpp"
47 #include "oops/oop.inline.hpp"
48 #include "opto/addnode.hpp"
49 #include "opto/callnode.hpp"
50 #include "opto/cfgnode.hpp"
51 #include "opto/connode.hpp"
52 #include "opto/graphKit.hpp"
53 #include "opto/machnode.hpp"
54 #include "opto/matcher.hpp"
55 #include "opto/memnode.hpp"
56 #include "opto/mulnode.hpp"
57 #include "opto/runtime.hpp"
58 #include "opto/subnode.hpp"
59 #include "runtime/fprofiler.hpp"
60 #include "runtime/handles.inline.hpp"
61 #include "runtime/interfaceSupport.hpp"
62 #include "runtime/javaCalls.hpp"
63 #include "runtime/sharedRuntime.hpp"
64 #include "runtime/signature.hpp"
65 #include "runtime/threadCritical.hpp"
66 #include "runtime/vframe.hpp"
67 #include "runtime/vframeArray.hpp"
68 #include "runtime/vframe_hp.hpp"
69 #include "utilities/copy.hpp"
70 #include "utilities/preserveException.hpp"
71 #ifdef TARGET_ARCH_MODEL_x86_32
72 # include "adfiles/ad_x86_32.hpp"
73 #endif
74 #ifdef TARGET_ARCH_MODEL_x86_64
75 # include "adfiles/ad_x86_64.hpp"
76 #endif
77 #ifdef TARGET_ARCH_MODEL_sparc
78 # include "adfiles/ad_sparc.hpp"
79 #endif
80 #ifdef TARGET_ARCH_MODEL_zero
81 # include "adfiles/ad_zero.hpp"
82 #endif
83 #ifdef TARGET_ARCH_MODEL_arm
84 # include "adfiles/ad_arm.hpp"
85 #endif
86 #ifdef TARGET_ARCH_MODEL_ppc
87 # include "adfiles/ad_ppc.hpp"
88 #endif
89
90
91 // For debugging purposes:
92 // To force FullGCALot inside a runtime function, add the following two lines
93 //
94 // Universe::release_fullgc_alot_dummy();
95 // MarkSweep::invoke(0, "Debugging");
96 //
97 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
98
99
100
101
102 // Compiled code entry points
103 address OptoRuntime::_new_instance_Java = NULL;
104 address OptoRuntime::_new_array_Java = NULL;
105 address OptoRuntime::_multianewarray2_Java = NULL;
106 address OptoRuntime::_multianewarray3_Java = NULL;
107 address OptoRuntime::_multianewarray4_Java = NULL;
108 address OptoRuntime::_multianewarray5_Java = NULL;
109 address OptoRuntime::_g1_wb_pre_Java = NULL;
110 address OptoRuntime::_g1_wb_post_Java = NULL;
111 address OptoRuntime::_vtable_must_compile_Java = NULL;
112 address OptoRuntime::_complete_monitor_locking_Java = NULL;
113 address OptoRuntime::_rethrow_Java = NULL;
114
115 address OptoRuntime::_slow_arraycopy_Java = NULL;
116 address OptoRuntime::_register_finalizer_Java = NULL;
117
118 # ifdef ENABLE_ZAP_DEAD_LOCALS
119 address OptoRuntime::_zap_dead_Java_locals_Java = NULL;
120 address OptoRuntime::_zap_dead_native_locals_Java = NULL;
121 # endif
122
123 ExceptionBlob* OptoRuntime::_exception_blob;
124
125 // This should be called in an assertion at the start of OptoRuntime routines
126 // which are entered from compiled code (all of them)
127 #ifndef PRODUCT
128 static bool check_compiled_frame(JavaThread* thread) {
129 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
130 #ifdef ASSERT
131 RegisterMap map(thread, false);
132 frame caller = thread->last_frame().sender(&map);
133 assert(caller.is_compiled_frame(), "not being called from compiled like code");
134 #endif /* ASSERT */
135 return true;
136 }
137 #endif
138
139
140 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
141 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
142
143 void OptoRuntime::generate(ciEnv* env) {
144
145 generate_exception_blob();
146
147 // Note: tls: Means fetching the return oop out of the thread-local storage
148 //
149 // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc
150 // -------------------------------------------------------------------------------------------------------------------------------
151 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false);
152 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false);
153 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false);
154 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false);
155 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false);
156 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false);
157 gen(env, _g1_wb_pre_Java , g1_wb_pre_Type , SharedRuntime::g1_wb_pre , 0 , false, false, false);
158 gen(env, _g1_wb_post_Java , g1_wb_post_Type , SharedRuntime::g1_wb_post , 0 , false, false, false);
159 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C , 0 , false, false, false);
160 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true );
161
162 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false);
163 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false);
164
165 # ifdef ENABLE_ZAP_DEAD_LOCALS
166 gen(env, _zap_dead_Java_locals_Java , zap_dead_locals_Type , zap_dead_Java_locals_C , 0 , false, true , false );
167 gen(env, _zap_dead_native_locals_Java , zap_dead_locals_Type , zap_dead_native_locals_C , 0 , false, true , false );
168 # endif
169
170 }
171
172 #undef gen
173
174
175 // Helper method to do generation of RunTimeStub's
176 address OptoRuntime::generate_stub( ciEnv* env,
177 TypeFunc_generator gen, address C_function,
178 const char *name, int is_fancy_jump,
179 bool pass_tls,
180 bool save_argument_registers,
181 bool return_pc ) {
182 ResourceMark rm;
183 Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
184 return C.stub_entry_point();
185 }
186
187 const char* OptoRuntime::stub_name(address entry) {
188 #ifndef PRODUCT
189 CodeBlob* cb = CodeCache::find_blob(entry);
190 RuntimeStub* rs =(RuntimeStub *)cb;
191 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
192 return rs->name();
193 #else
194 // Fast implementation for product mode (maybe it should be inlined too)
195 return "runtime stub";
196 #endif
197 }
198
199
200 //=============================================================================
201 // Opto compiler runtime routines
202 //=============================================================================
203
204
205 //=============================allocation======================================
206 // We failed the fast-path allocation. Now we need to do a scavenge or GC
207 // and try allocation again.
208
209 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
210 // After any safepoint, just before going back to compiled code,
211 // we inform the GC that we will be doing initializing writes to
212 // this object in the future without emitting card-marks, so
213 // GC may take any compensating steps.
214 // NOTE: Keep this code consistent with GraphKit::store_barrier.
215
216 oop new_obj = thread->vm_result();
217 if (new_obj == NULL) return;
218
219 assert(Universe::heap()->can_elide_tlab_store_barriers(),
220 "compiler must check this first");
221 // GC may decide to give back a safer copy of new_obj.
222 new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
223 thread->set_vm_result(new_obj);
224 }
225
226 // object allocation
227 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
228 JRT_BLOCK;
229 #ifndef PRODUCT
230 SharedRuntime::_new_instance_ctr++; // new instance requires GC
231 #endif
232 assert(check_compiled_frame(thread), "incorrect caller");
233
234 // These checks are cheap to make and support reflective allocation.
235 int lh = Klass::cast(klass)->layout_helper();
236 if (Klass::layout_helper_needs_slow_path(lh)
237 || !instanceKlass::cast(klass)->is_initialized()) {
238 KlassHandle kh(THREAD, klass);
239 kh->check_valid_for_instantiation(false, THREAD);
240 if (!HAS_PENDING_EXCEPTION) {
241 instanceKlass::cast(kh())->initialize(THREAD);
242 }
243 if (!HAS_PENDING_EXCEPTION) {
244 klass = kh();
245 } else {
246 klass = NULL;
247 }
248 }
249
250 if (klass != NULL) {
251 // Scavenge and allocate an instance.
252 oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
253 thread->set_vm_result(result);
254
255 // Pass oops back through thread local storage. Our apparent type to Java
256 // is that we return an oop, but we can block on exit from this routine and
257 // a GC can trash the oop in C's return register. The generated stub will
258 // fetch the oop from TLS after any possible GC.
259 }
260
261 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
262 JRT_BLOCK_END;
263
264 if (GraphKit::use_ReduceInitialCardMarks()) {
265 // inform GC that we won't do card marks for initializing writes.
266 new_store_pre_barrier(thread);
267 }
268 JRT_END
269
270
271 // array allocation
272 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
273 JRT_BLOCK;
274 #ifndef PRODUCT
275 SharedRuntime::_new_array_ctr++; // new array requires GC
276 #endif
277 assert(check_compiled_frame(thread), "incorrect caller");
278
279 // Scavenge and allocate an instance.
280 oop result;
281
282 if (Klass::cast(array_type)->oop_is_typeArray()) {
283 // The oopFactory likes to work with the element type.
284 // (We could bypass the oopFactory, since it doesn't add much value.)
285 BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
286 result = oopFactory::new_typeArray(elem_type, len, THREAD);
287 } else {
288 // Although the oopFactory likes to work with the elem_type,
289 // the compiler prefers the array_type, since it must already have
290 // that latter value in hand for the fast path.
291 klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
292 result = oopFactory::new_objArray(elem_type, len, THREAD);
293 }
294
295 // Pass oops back through thread local storage. Our apparent type to Java
296 // is that we return an oop, but we can block on exit from this routine and
297 // a GC can trash the oop in C's return register. The generated stub will
298 // fetch the oop from TLS after any possible GC.
299 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
300 thread->set_vm_result(result);
301 JRT_BLOCK_END;
302
303 if (GraphKit::use_ReduceInitialCardMarks()) {
304 // inform GC that we won't do card marks for initializing writes.
305 new_store_pre_barrier(thread);
306 }
307 JRT_END
308
309 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
310
311 // multianewarray for 2 dimensions
312 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
313 #ifndef PRODUCT
314 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension
315 #endif
316 assert(check_compiled_frame(thread), "incorrect caller");
317 assert(oop(elem_type)->is_klass(), "not a class");
318 jint dims[2];
319 dims[0] = len1;
320 dims[1] = len2;
321 oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
322 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
323 thread->set_vm_result(obj);
324 JRT_END
325
326 // multianewarray for 3 dimensions
327 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
328 #ifndef PRODUCT
329 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension
330 #endif
331 assert(check_compiled_frame(thread), "incorrect caller");
332 assert(oop(elem_type)->is_klass(), "not a class");
333 jint dims[3];
334 dims[0] = len1;
335 dims[1] = len2;
336 dims[2] = len3;
337 oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
338 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
339 thread->set_vm_result(obj);
340 JRT_END
341
342 // multianewarray for 4 dimensions
343 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
344 #ifndef PRODUCT
345 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension
346 #endif
347 assert(check_compiled_frame(thread), "incorrect caller");
348 assert(oop(elem_type)->is_klass(), "not a class");
349 jint dims[4];
350 dims[0] = len1;
351 dims[1] = len2;
352 dims[2] = len3;
353 dims[3] = len4;
354 oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
355 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
356 thread->set_vm_result(obj);
357 JRT_END
358
359 // multianewarray for 5 dimensions
360 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
361 #ifndef PRODUCT
362 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension
363 #endif
364 assert(check_compiled_frame(thread), "incorrect caller");
365 assert(oop(elem_type)->is_klass(), "not a class");
366 jint dims[5];
367 dims[0] = len1;
368 dims[1] = len2;
369 dims[2] = len3;
370 dims[3] = len4;
371 dims[4] = len5;
372 oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
373 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
374 thread->set_vm_result(obj);
375 JRT_END
376
377 const TypeFunc *OptoRuntime::new_instance_Type() {
378 // create input type (domain)
379 const Type **fields = TypeTuple::fields(1);
380 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
381 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
382
383 // create result type (range)
384 fields = TypeTuple::fields(1);
385 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
386
387 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
388
389 return TypeFunc::make(domain, range);
390 }
391
392
393 const TypeFunc *OptoRuntime::athrow_Type() {
394 // create input type (domain)
395 const Type **fields = TypeTuple::fields(1);
396 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
397 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
398
399 // create result type (range)
400 fields = TypeTuple::fields(0);
401
402 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
403
404 return TypeFunc::make(domain, range);
405 }
406
407
408 const TypeFunc *OptoRuntime::new_array_Type() {
409 // create input type (domain)
410 const Type **fields = TypeTuple::fields(2);
411 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
412 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
413 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
414
415 // create result type (range)
416 fields = TypeTuple::fields(1);
417 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
418
419 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
420
421 return TypeFunc::make(domain, range);
422 }
423
424 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
425 // create input type (domain)
426 const int nargs = ndim + 1;
427 const Type **fields = TypeTuple::fields(nargs);
428 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
429 for( int i = 1; i < nargs; i++ )
430 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size
431 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
432
433 // create result type (range)
434 fields = TypeTuple::fields(1);
435 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
436 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
437
438 return TypeFunc::make(domain, range);
439 }
440
441 const TypeFunc *OptoRuntime::multianewarray2_Type() {
442 return multianewarray_Type(2);
443 }
444
445 const TypeFunc *OptoRuntime::multianewarray3_Type() {
446 return multianewarray_Type(3);
447 }
448
449 const TypeFunc *OptoRuntime::multianewarray4_Type() {
450 return multianewarray_Type(4);
451 }
452
453 const TypeFunc *OptoRuntime::multianewarray5_Type() {
454 return multianewarray_Type(5);
455 }
456
457 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
458 const Type **fields = TypeTuple::fields(2);
459 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
460 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
461 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
462
463 // create result type (range)
464 fields = TypeTuple::fields(0);
465 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
466
467 return TypeFunc::make(domain, range);
468 }
469
470 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
471
472 const Type **fields = TypeTuple::fields(2);
473 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr
474 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
475 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
476
477 // create result type (range)
478 fields = TypeTuple::fields(0);
479 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
480
481 return TypeFunc::make(domain, range);
482 }
483
484 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
485 // create input type (domain)
486 const Type **fields = TypeTuple::fields(1);
487 // Symbol* name of class to be loaded
488 fields[TypeFunc::Parms+0] = TypeInt::INT;
489 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
490
491 // create result type (range)
492 fields = TypeTuple::fields(0);
493 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
494
495 return TypeFunc::make(domain, range);
496 }
497
498 # ifdef ENABLE_ZAP_DEAD_LOCALS
499 // Type used for stub generation for zap_dead_locals.
500 // No inputs or outputs
501 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
502 // create input type (domain)
503 const Type **fields = TypeTuple::fields(0);
504 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
505
506 // create result type (range)
507 fields = TypeTuple::fields(0);
508 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
509
510 return TypeFunc::make(domain,range);
511 }
512 # endif
513
514
515 //-----------------------------------------------------------------------------
516 // Monitor Handling
517 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
518 // create input type (domain)
519 const Type **fields = TypeTuple::fields(2);
520 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
521 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
522 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
523
524 // create result type (range)
525 fields = TypeTuple::fields(0);
526
527 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
528
529 return TypeFunc::make(domain,range);
530 }
531
532
533 //-----------------------------------------------------------------------------
534 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
535 // create input type (domain)
536 const Type **fields = TypeTuple::fields(2);
537 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
538 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
539 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
540
541 // create result type (range)
542 fields = TypeTuple::fields(0);
543
544 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
545
546 return TypeFunc::make(domain,range);
547 }
548
549 const TypeFunc* OptoRuntime::flush_windows_Type() {
550 // create input type (domain)
551 const Type** fields = TypeTuple::fields(1);
552 fields[TypeFunc::Parms+0] = NULL; // void
553 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
554
555 // create result type
556 fields = TypeTuple::fields(1);
557 fields[TypeFunc::Parms+0] = NULL; // void
558 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
559
560 return TypeFunc::make(domain, range);
561 }
562
563 const TypeFunc* OptoRuntime::l2f_Type() {
564 // create input type (domain)
565 const Type **fields = TypeTuple::fields(2);
566 fields[TypeFunc::Parms+0] = TypeLong::LONG;
567 fields[TypeFunc::Parms+1] = Type::HALF;
568 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
569
570 // create result type (range)
571 fields = TypeTuple::fields(1);
572 fields[TypeFunc::Parms+0] = Type::FLOAT;
573 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
574
575 return TypeFunc::make(domain, range);
576 }
577
578 const TypeFunc* OptoRuntime::modf_Type() {
579 const Type **fields = TypeTuple::fields(2);
580 fields[TypeFunc::Parms+0] = Type::FLOAT;
581 fields[TypeFunc::Parms+1] = Type::FLOAT;
582 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
583
584 // create result type (range)
585 fields = TypeTuple::fields(1);
586 fields[TypeFunc::Parms+0] = Type::FLOAT;
587
588 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
589
590 return TypeFunc::make(domain, range);
591 }
592
593 const TypeFunc *OptoRuntime::Math_D_D_Type() {
594 // create input type (domain)
595 const Type **fields = TypeTuple::fields(2);
596 // Symbol* name of class to be loaded
597 fields[TypeFunc::Parms+0] = Type::DOUBLE;
598 fields[TypeFunc::Parms+1] = Type::HALF;
599 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
600
601 // create result type (range)
602 fields = TypeTuple::fields(2);
603 fields[TypeFunc::Parms+0] = Type::DOUBLE;
604 fields[TypeFunc::Parms+1] = Type::HALF;
605 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
606
607 return TypeFunc::make(domain, range);
608 }
609
610 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
611 const Type **fields = TypeTuple::fields(4);
612 fields[TypeFunc::Parms+0] = Type::DOUBLE;
613 fields[TypeFunc::Parms+1] = Type::HALF;
614 fields[TypeFunc::Parms+2] = Type::DOUBLE;
615 fields[TypeFunc::Parms+3] = Type::HALF;
616 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
617
618 // create result type (range)
619 fields = TypeTuple::fields(2);
620 fields[TypeFunc::Parms+0] = Type::DOUBLE;
621 fields[TypeFunc::Parms+1] = Type::HALF;
622 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
623
624 return TypeFunc::make(domain, range);
625 }
626
627 //-------------- currentTimeMillis
628
629 const TypeFunc* OptoRuntime::current_time_millis_Type() {
630 // create input type (domain)
631 const Type **fields = TypeTuple::fields(0);
632 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
633
634 // create result type (range)
635 fields = TypeTuple::fields(2);
636 fields[TypeFunc::Parms+0] = TypeLong::LONG;
637 fields[TypeFunc::Parms+1] = Type::HALF;
638 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
639
640 return TypeFunc::make(domain, range);
641 }
642
643 // arraycopy stub variations:
644 enum ArrayCopyType {
645 ac_fast, // void(ptr, ptr, size_t)
646 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr)
647 ac_slow, // void(ptr, int, ptr, int, int)
648 ac_generic // int(ptr, int, ptr, int, int)
649 };
650
651 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
652 // create input type (domain)
653 int num_args = (act == ac_fast ? 3 : 5);
654 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
655 int argcnt = num_args;
656 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
657 const Type** fields = TypeTuple::fields(argcnt);
658 int argp = TypeFunc::Parms;
659 fields[argp++] = TypePtr::NOTNULL; // src
660 if (num_size_args == 0) {
661 fields[argp++] = TypeInt::INT; // src_pos
662 }
663 fields[argp++] = TypePtr::NOTNULL; // dest
664 if (num_size_args == 0) {
665 fields[argp++] = TypeInt::INT; // dest_pos
666 fields[argp++] = TypeInt::INT; // length
667 }
668 while (num_size_args-- > 0) {
669 fields[argp++] = TypeX_X; // size in whatevers (size_t)
670 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
671 }
672 if (act == ac_checkcast) {
673 fields[argp++] = TypePtr::NOTNULL; // super_klass
674 }
675 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
676 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
677
678 // create result type if needed
679 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
680 fields = TypeTuple::fields(1);
681 if (retcnt == 0)
682 fields[TypeFunc::Parms+0] = NULL; // void
683 else
684 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
685 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
686 return TypeFunc::make(domain, range);
687 }
688
689 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
690 // This signature is simple: Two base pointers and a size_t.
691 return make_arraycopy_Type(ac_fast);
692 }
693
694 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
695 // An extension of fast_arraycopy_Type which adds type checking.
696 return make_arraycopy_Type(ac_checkcast);
697 }
698
699 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
700 // This signature is exactly the same as System.arraycopy.
701 // There are no intptr_t (int/long) arguments.
702 return make_arraycopy_Type(ac_slow);
703 }
704
705 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
706 // This signature is like System.arraycopy, except that it returns status.
707 return make_arraycopy_Type(ac_generic);
708 }
709
710
711 const TypeFunc* OptoRuntime::array_fill_Type() {
712 // create input type (domain): pointer, int, size_t
713 const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
714 int argp = TypeFunc::Parms;
715 fields[argp++] = TypePtr::NOTNULL;
716 fields[argp++] = TypeInt::INT;
717 fields[argp++] = TypeX_X; // size in whatevers (size_t)
718 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
719 const TypeTuple *domain = TypeTuple::make(argp, fields);
720
721 // create result type
722 fields = TypeTuple::fields(1);
723 fields[TypeFunc::Parms+0] = NULL; // void
724 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
725
726 return TypeFunc::make(domain, range);
727 }
728
729 //------------- Interpreter state access for on stack replacement
730 const TypeFunc* OptoRuntime::osr_end_Type() {
731 // create input type (domain)
732 const Type **fields = TypeTuple::fields(1);
733 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
734 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
735
736 // create result type
737 fields = TypeTuple::fields(1);
738 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
739 fields[TypeFunc::Parms+0] = NULL; // void
740 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
741 return TypeFunc::make(domain, range);
742 }
743
744 //-------------- methodData update helpers
745
746 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
747 // create input type (domain)
748 const Type **fields = TypeTuple::fields(2);
749 fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer
750 fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop
751 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
752
753 // create result type
754 fields = TypeTuple::fields(1);
755 fields[TypeFunc::Parms+0] = NULL; // void
756 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
757 return TypeFunc::make(domain,range);
758 }
759
760 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
761 if (receiver == NULL) return;
762 klassOop receiver_klass = receiver->klass();
763
764 intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
765 int empty_row = -1; // free row, if any is encountered
766
767 // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
768 for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
769 // if (vc->receiver(row) == receiver_klass)
770 int receiver_off = ReceiverTypeData::receiver_cell_index(row);
771 intptr_t row_recv = *(mdp + receiver_off);
772 if (row_recv == (intptr_t) receiver_klass) {
773 // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
774 int count_off = ReceiverTypeData::receiver_count_cell_index(row);
775 *(mdp + count_off) += DataLayout::counter_increment;
776 return;
777 } else if (row_recv == 0) {
778 // else if (vc->receiver(row) == NULL)
779 empty_row = (int) row;
780 }
781 }
782
783 if (empty_row != -1) {
784 int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
785 // vc->set_receiver(empty_row, receiver_klass);
786 *(mdp + receiver_off) = (intptr_t) receiver_klass;
787 // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
788 int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
789 *(mdp + count_off) = DataLayout::counter_increment;
790 } else {
791 // Receiver did not match any saved receiver and there is no empty row for it.
792 // Increment total counter to indicate polymorphic case.
793 intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
794 *count_p += DataLayout::counter_increment;
795 }
796 JRT_END
797
798 //-----------------------------------------------------------------------------
799 // implicit exception support.
800
801 static void report_null_exception_in_code_cache(address exception_pc) {
802 ResourceMark rm;
803 CodeBlob* n = CodeCache::find_blob(exception_pc);
804 if (n != NULL) {
805 tty->print_cr("#");
806 tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
807 tty->print_cr("#");
808 tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);
809
810 if (n->is_nmethod()) {
811 methodOop method = ((nmethod*)n)->method();
812 tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
813 tty->print_cr("#");
814 if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
815 const char* title = "HotSpot Runtime Error";
816 const char* question = "Do you want to exclude compilation of this method in future runs?";
817 if (os::message_box(title, question)) {
818 CompilerOracle::append_comment_to_file("");
819 CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
820 CompilerOracle::append_comment_to_file("");
821 CompilerOracle::append_exclude_to_file(method);
822 tty->print_cr("#");
823 tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
824 tty->print_cr("#");
825 }
826 }
827 fatal("Implicit null exception happened in compiled method");
828 } else {
829 n->print();
830 fatal("Implicit null exception happened in generated stub");
831 }
832 }
833 fatal("Implicit null exception at wrong place");
834 }
835
836
837 //-------------------------------------------------------------------------------------
838 // register policy
839
840 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
841 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
842 switch (register_save_policy[reg]) {
843 case 'C': return false; //SOC
844 case 'E': return true ; //SOE
845 case 'N': return false; //NS
846 case 'A': return false; //AS
847 }
848 ShouldNotReachHere();
849 return false;
850 }
851
852 //-----------------------------------------------------------------------
853 // Exceptions
854 //
855
856 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
857
858 // The method is an entry that is always called by a C++ method not
859 // directly from compiled code. Compiled code will call the C++ method following.
860 // We can't allow async exception to be installed during exception processing.
861 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
862
863 // Do not confuse exception_oop with pending_exception. The exception_oop
864 // is only used to pass arguments into the method. Not for general
865 // exception handling. DO NOT CHANGE IT to use pending_exception, since
866 // the runtime stubs checks this on exit.
867 assert(thread->exception_oop() != NULL, "exception oop is found");
868 address handler_address = NULL;
869
870 Handle exception(thread, thread->exception_oop());
871
872 if (TraceExceptions) {
873 trace_exception(exception(), thread->exception_pc(), "");
874 }
875 // for AbortVMOnException flag
876 NOT_PRODUCT(Exceptions::debug_check_abort(exception));
877
878 #ifdef ASSERT
879 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
880 // should throw an exception here
881 ShouldNotReachHere();
882 }
883 #endif
884
885
886 // new exception handling: this method is entered only from adapters
887 // exceptions from compiled java methods are handled in compiled code
888 // using rethrow node
889
890 address pc = thread->exception_pc();
891 nm = CodeCache::find_nmethod(pc);
892 assert(nm != NULL, "No NMethod found");
893 if (nm->is_native_method()) {
894 fatal("Native mathod should not have path to exception handling");
895 } else {
896 // we are switching to old paradigm: search for exception handler in caller_frame
897 // instead in exception handler of caller_frame.sender()
898
899 if (JvmtiExport::can_post_on_exceptions()) {
900 // "Full-speed catching" is not necessary here,
901 // since we're notifying the VM on every catch.
902 // Force deoptimization and the rest of the lookup
903 // will be fine.
904 deoptimize_caller_frame(thread, true);
905 }
906
907 // Check the stack guard pages. If enabled, look for handler in this frame;
908 // otherwise, forcibly unwind the frame.
909 //
910 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
911 bool force_unwind = !thread->reguard_stack();
912 bool deopting = false;
913 if (nm->is_deopt_pc(pc)) {
914 deopting = true;
915 RegisterMap map(thread, false);
916 frame deoptee = thread->last_frame().sender(&map);
917 assert(deoptee.is_deoptimized_frame(), "must be deopted");
918 // Adjust the pc back to the original throwing pc
919 pc = deoptee.pc();
920 }
921
922 // If we are forcing an unwind because of stack overflow then deopt is
923 // irrelevant sice we are throwing the frame away anyway.
924
925 if (deopting && !force_unwind) {
926 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
927 } else {
928
929 handler_address =
930 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
931
932 if (handler_address == NULL) {
933 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
934 assert (handler_address != NULL, "must have compiled handler");
935 // Update the exception cache only when the unwind was not forced.
936 if (!force_unwind) {
937 nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
938 }
939 } else {
940 assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
941 }
942 }
943
944 thread->set_exception_pc(pc);
945 thread->set_exception_handler_pc(handler_address);
946 thread->set_exception_stack_size(0);
947
948 // Check if the exception PC is a MethodHandle call site.
949 thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
950 }
951
952 // Restore correct return pc. Was saved above.
953 thread->set_exception_oop(exception());
954 return handler_address;
955
956 JRT_END
957
958 // We are entering here from exception_blob
959 // If there is a compiled exception handler in this method, we will continue there;
960 // otherwise we will unwind the stack and continue at the caller of top frame method
961 // Note we enter without the usual JRT wrapper. We will call a helper routine that
962 // will do the normal VM entry. We do it this way so that we can see if the nmethod
963 // we looked up the handler for has been deoptimized in the meantime. If it has been
964 // we must not use the handler and instread return the deopt blob.
965 address OptoRuntime::handle_exception_C(JavaThread* thread) {
966 //
967 // We are in Java not VM and in debug mode we have a NoHandleMark
968 //
969 #ifndef PRODUCT
970 SharedRuntime::_find_handler_ctr++; // find exception handler
971 #endif
972 debug_only(NoHandleMark __hm;)
973 nmethod* nm = NULL;
974 address handler_address = NULL;
975 {
976 // Enter the VM
977
978 ResetNoHandleMark rnhm;
979 handler_address = handle_exception_C_helper(thread, nm);
980 }
981
982 // Back in java: Use no oops, DON'T safepoint
983
984 // Now check to see if the handler we are returning is in a now
985 // deoptimized frame
986
987 if (nm != NULL) {
988 RegisterMap map(thread, false);
989 frame caller = thread->last_frame().sender(&map);
990 #ifdef ASSERT
991 assert(caller.is_compiled_frame(), "must be");
992 #endif // ASSERT
993 if (caller.is_deoptimized_frame()) {
994 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
995 }
996 }
997 return handler_address;
998 }
999
1000 //------------------------------rethrow----------------------------------------
1001 // We get here after compiled code has executed a 'RethrowNode'. The callee
1002 // is either throwing or rethrowing an exception. The callee-save registers
1003 // have been restored, synchronized objects have been unlocked and the callee
1004 // stack frame has been removed. The return address was passed in.
1005 // Exception oop is passed as the 1st argument. This routine is then called
1006 // from the stub. On exit, we know where to jump in the caller's code.
1007 // After this C code exits, the stub will pop his frame and end in a jump
1008 // (instead of a return). We enter the caller's default handler.
1009 //
1010 // This must be JRT_LEAF:
1011 // - caller will not change its state as we cannot block on exit,
1012 // therefore raw_exception_handler_for_return_address is all it takes
1013 // to handle deoptimized blobs
1014 //
1015 // However, there needs to be a safepoint check in the middle! So compiled
1016 // safepoints are completely watertight.
1017 //
1018 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1019 //
1020 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1021 //
1022 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1023 #ifndef PRODUCT
1024 SharedRuntime::_rethrow_ctr++; // count rethrows
1025 #endif
1026 assert (exception != NULL, "should have thrown a NULLPointerException");
1027 #ifdef ASSERT
1028 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1029 // should throw an exception here
1030 ShouldNotReachHere();
1031 }
1032 #endif
1033
1034 thread->set_vm_result(exception);
1035 // Frame not compiled (handles deoptimization blob)
1036 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1037 }
1038
1039
1040 const TypeFunc *OptoRuntime::rethrow_Type() {
1041 // create input type (domain)
1042 const Type **fields = TypeTuple::fields(1);
1043 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1044 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1045
1046 // create result type (range)
1047 fields = TypeTuple::fields(1);
1048 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1049 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1050
1051 return TypeFunc::make(domain, range);
1052 }
1053
1054
1055 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1056 // Deoptimize frame
1057 if (doit) {
1058 // Called from within the owner thread, so no need for safepoint
1059 RegisterMap reg_map(thread);
1060 frame stub_frame = thread->last_frame();
1061 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1062 frame caller_frame = stub_frame.sender(®_map);
1063
1064 // bypass VM_DeoptimizeFrame and deoptimize the frame directly
1065 Deoptimization::deoptimize_frame(thread, caller_frame.id());
1066 }
1067 }
1068
1069
1070 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1071 // create input type (domain)
1072 const Type **fields = TypeTuple::fields(1);
1073 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
1074 // // The JavaThread* is passed to each routine as the last argument
1075 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
1076 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1077
1078 // create result type (range)
1079 fields = TypeTuple::fields(0);
1080
1081 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1082
1083 return TypeFunc::make(domain,range);
1084 }
1085
1086
1087 //-----------------------------------------------------------------------------
1088 // Dtrace support. entry and exit probes have the same signature
1089 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1090 // create input type (domain)
1091 const Type **fields = TypeTuple::fields(2);
1092 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1093 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // methodOop; Method we are entering
1094 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1095
1096 // create result type (range)
1097 fields = TypeTuple::fields(0);
1098
1099 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1100
1101 return TypeFunc::make(domain,range);
1102 }
1103
1104 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1105 // create input type (domain)
1106 const Type **fields = TypeTuple::fields(2);
1107 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1108 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
1109
1110 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1111
1112 // create result type (range)
1113 fields = TypeTuple::fields(0);
1114
1115 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1116
1117 return TypeFunc::make(domain,range);
1118 }
1119
1120
1121 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1122 assert(obj->is_oop(), "must be a valid oop");
1123 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
1124 instanceKlass::register_finalizer(instanceOop(obj), CHECK);
1125 JRT_END
1126
1127 //-----------------------------------------------------------------------------
1128
1129 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1130
1131 //
1132 // dump the collected NamedCounters.
1133 //
1134 void OptoRuntime::print_named_counters() {
1135 int total_lock_count = 0;
1136 int eliminated_lock_count = 0;
1137
1138 NamedCounter* c = _named_counters;
1139 while (c) {
1140 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1141 int count = c->count();
1142 if (count > 0) {
1143 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1144 if (Verbose) {
1145 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1146 }
1147 total_lock_count += count;
1148 if (eliminated) {
1149 eliminated_lock_count += count;
1150 }
1151 }
1152 } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1153 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1154 if (blc->nonzero()) {
1155 tty->print_cr("%s", c->name());
1156 blc->print_on(tty);
1157 }
1158 }
1159 c = c->next();
1160 }
1161 if (total_lock_count > 0) {
1162 tty->print_cr("dynamic locks: %d", total_lock_count);
1163 if (eliminated_lock_count) {
1164 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1165 (int)(eliminated_lock_count * 100.0 / total_lock_count));
1166 }
1167 }
1168 }
1169
1170 //
1171 // Allocate a new NamedCounter. The JVMState is used to generate the
1172 // name which consists of method@line for the inlining tree.
1173 //
1174
1175 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1176 int max_depth = youngest_jvms->depth();
1177
1178 // Visit scopes from youngest to oldest.
1179 bool first = true;
1180 stringStream st;
1181 for (int depth = max_depth; depth >= 1; depth--) {
1182 JVMState* jvms = youngest_jvms->of_depth(depth);
1183 ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1184 if (!first) {
1185 st.print(" ");
1186 } else {
1187 first = false;
1188 }
1189 int bci = jvms->bci();
1190 if (bci < 0) bci = 0;
1191 st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1192 // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1193 }
1194 NamedCounter* c;
1195 if (tag == NamedCounter::BiasedLockingCounter) {
1196 c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1197 } else {
1198 c = new NamedCounter(strdup(st.as_string()), tag);
1199 }
1200
1201 // atomically add the new counter to the head of the list. We only
1202 // add counters so this is safe.
1203 NamedCounter* head;
1204 do {
1205 head = _named_counters;
1206 c->set_next(head);
1207 } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1208 return c;
1209 }
1210
1211 //-----------------------------------------------------------------------------
1212 // Non-product code
1213 #ifndef PRODUCT
1214
1215 int trace_exception_counter = 0;
1216 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1217 ttyLocker ttyl;
1218 trace_exception_counter++;
1219 tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1220 exception_oop->print_value();
1221 tty->print(" in ");
1222 CodeBlob* blob = CodeCache::find_blob(exception_pc);
1223 if (blob->is_nmethod()) {
1224 ((nmethod*)blob)->method()->print_value();
1225 } else if (blob->is_runtime_stub()) {
1226 tty->print("<runtime-stub>");
1227 } else {
1228 tty->print("<unknown>");
1229 }
1230 tty->print(" at " INTPTR_FORMAT, exception_pc);
1231 tty->print_cr("]");
1232 }
1233
1234 #endif // PRODUCT
1235
1236
1237 # ifdef ENABLE_ZAP_DEAD_LOCALS
1238 // Called from call sites in compiled code with oop maps (actually safepoints)
1239 // Zaps dead locals in first java frame.
1240 // Is entry because may need to lock to generate oop maps
1241 // Currently, only used for compiler frames, but someday may be used
1242 // for interpreter frames, too.
1243
1244 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1245
1246 // avoid pointers to member funcs with these helpers
1247 static bool is_java_frame( frame* f) { return f->is_java_frame(); }
1248 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1249
1250
1251 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1252 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1253 assert(JavaThread::current() == thread, "is this needed?");
1254
1255 if ( !ZapDeadCompiledLocals ) return;
1256
1257 bool skip = false;
1258
1259 if ( ZapDeadCompiledLocalsFirst == 0 ) ; // nothing special
1260 else if ( ZapDeadCompiledLocalsFirst > ZapDeadCompiledLocals_count ) skip = true;
1261 else if ( ZapDeadCompiledLocalsFirst == ZapDeadCompiledLocals_count )
1262 warning("starting zapping after skipping");
1263
1264 if ( ZapDeadCompiledLocalsLast == -1 ) ; // nothing special
1265 else if ( ZapDeadCompiledLocalsLast < ZapDeadCompiledLocals_count ) skip = true;
1266 else if ( ZapDeadCompiledLocalsLast == ZapDeadCompiledLocals_count )
1267 warning("about to zap last zap");
1268
1269 ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1270
1271 if ( skip ) return;
1272
1273 // find java frame and zap it
1274
1275 for (StackFrameStream sfs(thread); !sfs.is_done(); sfs.next()) {
1276 if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1277 sfs.current()->zap_dead_locals(thread, sfs.register_map());
1278 return;
1279 }
1280 }
1281 warning("no frame found to zap in zap_dead_Java_locals_C");
1282 }
1283
1284 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1285 zap_dead_java_or_native_locals(thread, is_java_frame);
1286 JRT_END
1287
1288 // The following does not work because for one thing, the
1289 // thread state is wrong; it expects java, but it is native.
1290 // Also, the invariants in a native stub are different and
1291 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1292 // in there.
1293 // So for now, we do not zap in native stubs.
1294
1295 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1296 zap_dead_java_or_native_locals(thread, is_native_frame);
1297 JRT_END
1298
1299 # endif