1 /*
2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "classfile/systemDictionary.hpp"
27 #include "classfile/vmSymbols.hpp"
28 #include "code/compiledIC.hpp"
29 #include "code/scopeDesc.hpp"
30 #include "code/vtableStubs.hpp"
31 #include "compiler/abstractCompiler.hpp"
32 #include "compiler/compileBroker.hpp"
33 #include "compiler/compilerOracle.hpp"
34 #include "interpreter/interpreter.hpp"
35 #include "interpreter/interpreterRuntime.hpp"
36 #include "memory/gcLocker.inline.hpp"
37 #include "memory/universe.inline.hpp"
38 #include "oops/oop.inline.hpp"
39 #include "prims/forte.hpp"
40 #include "prims/jvmtiExport.hpp"
41 #include "prims/jvmtiRedefineClassesTrace.hpp"
42 #include "prims/methodHandles.hpp"
43 #include "prims/nativeLookup.hpp"
44 #include "runtime/arguments.hpp"
45 #include "runtime/biasedLocking.hpp"
46 #include "runtime/handles.inline.hpp"
47 #include "runtime/init.hpp"
48 #include "runtime/interfaceSupport.hpp"
49 #include "runtime/javaCalls.hpp"
50 #include "runtime/sharedRuntime.hpp"
51 #include "runtime/stubRoutines.hpp"
52 #include "runtime/vframe.hpp"
53 #include "runtime/vframeArray.hpp"
54 #include "utilities/copy.hpp"
55 #include "utilities/dtrace.hpp"
56 #include "utilities/events.hpp"
57 #include "utilities/hashtable.inline.hpp"
58 #include "utilities/xmlstream.hpp"
59 #ifdef TARGET_ARCH_x86
60 # include "nativeInst_x86.hpp"
61 # include "vmreg_x86.inline.hpp"
62 #endif
63 #ifdef TARGET_ARCH_sparc
64 # include "nativeInst_sparc.hpp"
65 # include "vmreg_sparc.inline.hpp"
66 #endif
67 #ifdef TARGET_ARCH_zero
68 # include "nativeInst_zero.hpp"
69 # include "vmreg_zero.inline.hpp"
70 #endif
71 #ifdef TARGET_ARCH_arm
72 # include "nativeInst_arm.hpp"
73 # include "vmreg_arm.inline.hpp"
74 #endif
75 #ifdef TARGET_ARCH_ppc
76 # include "nativeInst_ppc.hpp"
77 # include "vmreg_ppc.inline.hpp"
78 #endif
79 #ifdef COMPILER1
80 #include "c1/c1_Runtime1.hpp"
81 #endif
82
83 // Shared stub locations
84 RuntimeStub* SharedRuntime::_wrong_method_blob;
85 RuntimeStub* SharedRuntime::_ic_miss_blob;
86 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
87 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
88 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
89
90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
91 RicochetBlob* SharedRuntime::_ricochet_blob;
92
93 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
94 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
95
96 #ifdef COMPILER2
97 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
98 #endif // COMPILER2
99
100
101 //----------------------------generate_stubs-----------------------------------
102 void SharedRuntime::generate_stubs() {
103 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub");
104 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
105 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call");
106 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call");
107 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call");
108
109 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false);
110 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true);
111
112 generate_ricochet_blob();
113 generate_deopt_blob();
114
115 #ifdef COMPILER2
116 generate_uncommon_trap_blob();
117 #endif // COMPILER2
118 }
119
120 //----------------------------generate_ricochet_blob---------------------------
121 void SharedRuntime::generate_ricochet_blob() {
122 if (!EnableInvokeDynamic) return; // leave it as a null
123
124 #ifndef TARGET_ARCH_NYI_6939861
125 // allocate space for the code
126 ResourceMark rm;
127 // setup code generation tools
128 CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256); // XXX x86 LP64L: 512, 512
129 MacroAssembler* masm = new MacroAssembler(&buffer);
130
131 int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1;
132 MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words);
133
134 // -------------
135 // make sure all code is generated
136 masm->flush();
137
138 // failed to generate?
139 if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) {
140 assert(false, "bad ricochet blob");
141 return;
142 }
143
144 _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
145 #endif
146 }
147
148
149 #include <math.h>
150
151 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
152 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
153 char*, int, char*, int, char*, int);
154 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
155 char*, int, char*, int, char*, int);
156
157 // Implementation of SharedRuntime
158
159 #ifndef PRODUCT
160 // For statistics
161 int SharedRuntime::_ic_miss_ctr = 0;
162 int SharedRuntime::_wrong_method_ctr = 0;
163 int SharedRuntime::_resolve_static_ctr = 0;
164 int SharedRuntime::_resolve_virtual_ctr = 0;
165 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
166 int SharedRuntime::_implicit_null_throws = 0;
167 int SharedRuntime::_implicit_div0_throws = 0;
168 int SharedRuntime::_throw_null_ctr = 0;
169
170 int SharedRuntime::_nof_normal_calls = 0;
171 int SharedRuntime::_nof_optimized_calls = 0;
172 int SharedRuntime::_nof_inlined_calls = 0;
173 int SharedRuntime::_nof_megamorphic_calls = 0;
174 int SharedRuntime::_nof_static_calls = 0;
175 int SharedRuntime::_nof_inlined_static_calls = 0;
176 int SharedRuntime::_nof_interface_calls = 0;
177 int SharedRuntime::_nof_optimized_interface_calls = 0;
178 int SharedRuntime::_nof_inlined_interface_calls = 0;
179 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
180 int SharedRuntime::_nof_removable_exceptions = 0;
181
182 int SharedRuntime::_new_instance_ctr=0;
183 int SharedRuntime::_new_array_ctr=0;
184 int SharedRuntime::_multi1_ctr=0;
185 int SharedRuntime::_multi2_ctr=0;
186 int SharedRuntime::_multi3_ctr=0;
187 int SharedRuntime::_multi4_ctr=0;
188 int SharedRuntime::_multi5_ctr=0;
189 int SharedRuntime::_mon_enter_stub_ctr=0;
190 int SharedRuntime::_mon_exit_stub_ctr=0;
191 int SharedRuntime::_mon_enter_ctr=0;
192 int SharedRuntime::_mon_exit_ctr=0;
193 int SharedRuntime::_partial_subtype_ctr=0;
194 int SharedRuntime::_jbyte_array_copy_ctr=0;
195 int SharedRuntime::_jshort_array_copy_ctr=0;
196 int SharedRuntime::_jint_array_copy_ctr=0;
197 int SharedRuntime::_jlong_array_copy_ctr=0;
198 int SharedRuntime::_oop_array_copy_ctr=0;
199 int SharedRuntime::_checkcast_array_copy_ctr=0;
200 int SharedRuntime::_unsafe_array_copy_ctr=0;
201 int SharedRuntime::_generic_array_copy_ctr=0;
202 int SharedRuntime::_slow_array_copy_ctr=0;
203 int SharedRuntime::_find_handler_ctr=0;
204 int SharedRuntime::_rethrow_ctr=0;
205
206 int SharedRuntime::_ICmiss_index = 0;
207 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
208 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
209
210
211 void SharedRuntime::trace_ic_miss(address at) {
212 for (int i = 0; i < _ICmiss_index; i++) {
213 if (_ICmiss_at[i] == at) {
214 _ICmiss_count[i]++;
215 return;
216 }
217 }
218 int index = _ICmiss_index++;
219 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
220 _ICmiss_at[index] = at;
221 _ICmiss_count[index] = 1;
222 }
223
224 void SharedRuntime::print_ic_miss_histogram() {
225 if (ICMissHistogram) {
226 tty->print_cr ("IC Miss Histogram:");
227 int tot_misses = 0;
228 for (int i = 0; i < _ICmiss_index; i++) {
229 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
230 tot_misses += _ICmiss_count[i];
231 }
232 tty->print_cr ("Total IC misses: %7d", tot_misses);
233 }
234 }
235 #endif // PRODUCT
236
237 #ifndef SERIALGC
238
239 // G1 write-barrier pre: executed before a pointer store.
240 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
241 if (orig == NULL) {
242 assert(false, "should be optimized out");
243 return;
244 }
245 assert(orig->is_oop(true /* ignore mark word */), "Error");
246 // store the original value that was in the field reference
247 thread->satb_mark_queue().enqueue(orig);
248 JRT_END
249
250 // G1 write-barrier post: executed after a pointer store.
251 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
252 thread->dirty_card_queue().enqueue(card_addr);
253 JRT_END
254
255 #endif // !SERIALGC
256
257
258 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
259 return x * y;
260 JRT_END
261
262
263 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
264 if (x == min_jlong && y == CONST64(-1)) {
265 return x;
266 } else {
267 return x / y;
268 }
269 JRT_END
270
271
272 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
273 if (x == min_jlong && y == CONST64(-1)) {
274 return 0;
275 } else {
276 return x % y;
277 }
278 JRT_END
279
280
281 const juint float_sign_mask = 0x7FFFFFFF;
282 const juint float_infinity = 0x7F800000;
283 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
284 const julong double_infinity = CONST64(0x7FF0000000000000);
285
286 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
287 #ifdef _WIN64
288 // 64-bit Windows on amd64 returns the wrong values for
289 // infinity operands.
290 union { jfloat f; juint i; } xbits, ybits;
291 xbits.f = x;
292 ybits.f = y;
293 // x Mod Infinity == x unless x is infinity
294 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
295 ((ybits.i & float_sign_mask) == float_infinity) ) {
296 return x;
297 }
298 #endif
299 return ((jfloat)fmod((double)x,(double)y));
300 JRT_END
301
302
303 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
304 #ifdef _WIN64
305 union { jdouble d; julong l; } xbits, ybits;
306 xbits.d = x;
307 ybits.d = y;
308 // x Mod Infinity == x unless x is infinity
309 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
310 ((ybits.l & double_sign_mask) == double_infinity) ) {
311 return x;
312 }
313 #endif
314 return ((jdouble)fmod((double)x,(double)y));
315 JRT_END
316
317 #ifdef __SOFTFP__
318 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
319 return x + y;
320 JRT_END
321
322 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
323 return x - y;
324 JRT_END
325
326 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
327 return x * y;
328 JRT_END
329
330 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
331 return x / y;
332 JRT_END
333
334 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
335 return x + y;
336 JRT_END
337
338 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
339 return x - y;
340 JRT_END
341
342 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
343 return x * y;
344 JRT_END
345
346 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
347 return x / y;
348 JRT_END
349
350 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
351 return (jfloat)x;
352 JRT_END
353
354 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
355 return (jdouble)x;
356 JRT_END
357
358 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
359 return (jdouble)x;
360 JRT_END
361
362 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
363 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
364 JRT_END
365
366 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
367 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
368 JRT_END
369
370 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
371 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
372 JRT_END
373
374 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
375 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
376 JRT_END
377
378 // Functions to return the opposite of the aeabi functions for nan.
379 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
380 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
381 JRT_END
382
383 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
384 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
385 JRT_END
386
387 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
388 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
389 JRT_END
390
391 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
392 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
393 JRT_END
394
395 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
396 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
397 JRT_END
398
399 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
400 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
401 JRT_END
402
403 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
404 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
405 JRT_END
406
407 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
408 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
409 JRT_END
410
411 // Intrinsics make gcc generate code for these.
412 float SharedRuntime::fneg(float f) {
413 return -f;
414 }
415
416 double SharedRuntime::dneg(double f) {
417 return -f;
418 }
419
420 #endif // __SOFTFP__
421
422 #if defined(__SOFTFP__) || defined(E500V2)
423 // Intrinsics make gcc generate code for these.
424 double SharedRuntime::dabs(double f) {
425 return (f <= (double)0.0) ? (double)0.0 - f : f;
426 }
427
428 #endif
429
430 #if defined(__SOFTFP__) || defined(PPC)
431 double SharedRuntime::dsqrt(double f) {
432 return sqrt(f);
433 }
434 #endif
435
436 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
437 if (g_isnan(x))
438 return 0;
439 if (x >= (jfloat) max_jint)
440 return max_jint;
441 if (x <= (jfloat) min_jint)
442 return min_jint;
443 return (jint) x;
444 JRT_END
445
446
447 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
448 if (g_isnan(x))
449 return 0;
450 if (x >= (jfloat) max_jlong)
451 return max_jlong;
452 if (x <= (jfloat) min_jlong)
453 return min_jlong;
454 return (jlong) x;
455 JRT_END
456
457
458 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
459 if (g_isnan(x))
460 return 0;
461 if (x >= (jdouble) max_jint)
462 return max_jint;
463 if (x <= (jdouble) min_jint)
464 return min_jint;
465 return (jint) x;
466 JRT_END
467
468
469 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
470 if (g_isnan(x))
471 return 0;
472 if (x >= (jdouble) max_jlong)
473 return max_jlong;
474 if (x <= (jdouble) min_jlong)
475 return min_jlong;
476 return (jlong) x;
477 JRT_END
478
479
480 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
481 return (jfloat)x;
482 JRT_END
483
484
485 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
486 return (jfloat)x;
487 JRT_END
488
489
490 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
491 return (jdouble)x;
492 JRT_END
493
494 // Exception handling accross interpreter/compiler boundaries
495 //
496 // exception_handler_for_return_address(...) returns the continuation address.
497 // The continuation address is the entry point of the exception handler of the
498 // previous frame depending on the return address.
499
500 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
501 assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
502
503 // Reset method handle flag.
504 thread->set_is_method_handle_return(false);
505
506 // The fastest case first
507 CodeBlob* blob = CodeCache::find_blob(return_address);
508 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
509 if (nm != NULL) {
510 // Set flag if return address is a method handle call site.
511 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
512 // native nmethods don't have exception handlers
513 assert(!nm->is_native_method(), "no exception handler");
514 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
515 if (nm->is_deopt_pc(return_address)) {
516 return SharedRuntime::deopt_blob()->unpack_with_exception();
517 } else {
518 return nm->exception_begin();
519 }
520 }
521
522 // Entry code
523 if (StubRoutines::returns_to_call_stub(return_address)) {
524 return StubRoutines::catch_exception_entry();
525 }
526 // Interpreted code
527 if (Interpreter::contains(return_address)) {
528 return Interpreter::rethrow_exception_entry();
529 }
530 // Ricochet frame unwind code
531 if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) {
532 return SharedRuntime::ricochet_blob()->exception_addr();
533 }
534
535 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
536 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
537
538 #ifndef PRODUCT
539 { ResourceMark rm;
540 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
541 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
542 tty->print_cr("b) other problem");
543 }
544 #endif // PRODUCT
545
546 ShouldNotReachHere();
547 return NULL;
548 }
549
550
551 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
552 return raw_exception_handler_for_return_address(thread, return_address);
553 JRT_END
554
555
556 address SharedRuntime::get_poll_stub(address pc) {
557 address stub;
558 // Look up the code blob
559 CodeBlob *cb = CodeCache::find_blob(pc);
560
561 // Should be an nmethod
562 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
563
564 // Look up the relocation information
565 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
566 "safepoint polling: type must be poll" );
567
568 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
569 "Only polling locations are used for safepoint");
570
571 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
572 if (at_poll_return) {
573 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
574 "polling page return stub not created yet");
575 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
576 } else {
577 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
578 "polling page safepoint stub not created yet");
579 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
580 }
581 #ifndef PRODUCT
582 if( TraceSafepoint ) {
583 char buf[256];
584 jio_snprintf(buf, sizeof(buf),
585 "... found polling page %s exception at pc = "
586 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
587 at_poll_return ? "return" : "loop",
588 (intptr_t)pc, (intptr_t)stub);
589 tty->print_raw_cr(buf);
590 }
591 #endif // PRODUCT
592 return stub;
593 }
594
595
596 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
597 assert(caller.is_interpreted_frame(), "");
598 int args_size = ArgumentSizeComputer(sig).size() + 1;
599 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
600 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
601 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
602 return result;
603 }
604
605
606 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
607 if (JvmtiExport::can_post_on_exceptions()) {
608 vframeStream vfst(thread, true);
609 methodHandle method = methodHandle(thread, vfst.method());
610 address bcp = method()->bcp_from(vfst.bci());
611 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
612 }
613 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
614 }
615
616 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
617 Handle h_exception = Exceptions::new_exception(thread, name, message);
618 throw_and_post_jvmti_exception(thread, h_exception);
619 }
620
621 // The interpreter code to call this tracing function is only
622 // called/generated when TraceRedefineClasses has the right bits
623 // set. Since obsolete methods are never compiled, we don't have
624 // to modify the compilers to generate calls to this function.
625 //
626 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
627 JavaThread* thread, methodOopDesc* method))
628 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
629
630 if (method->is_obsolete()) {
631 // We are calling an obsolete method, but this is not necessarily
632 // an error. Our method could have been redefined just after we
633 // fetched the methodOop from the constant pool.
634
635 // RC_TRACE macro has an embedded ResourceMark
636 RC_TRACE_WITH_THREAD(0x00001000, thread,
637 ("calling obsolete method '%s'",
638 method->name_and_sig_as_C_string()));
639 if (RC_TRACE_ENABLED(0x00002000)) {
640 // this option is provided to debug calls to obsolete methods
641 guarantee(false, "faulting at call to an obsolete method.");
642 }
643 }
644 return 0;
645 JRT_END
646
647 // ret_pc points into caller; we are returning caller's exception handler
648 // for given exception
649 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
650 bool force_unwind, bool top_frame_only) {
651 assert(nm != NULL, "must exist");
652 ResourceMark rm;
653
654 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
655 // determine handler bci, if any
656 EXCEPTION_MARK;
657
658 int handler_bci = -1;
659 int scope_depth = 0;
660 if (!force_unwind) {
661 int bci = sd->bci();
662 bool recursive_exception = false;
663 do {
664 bool skip_scope_increment = false;
665 // exception handler lookup
666 KlassHandle ek (THREAD, exception->klass());
667 handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
668 if (HAS_PENDING_EXCEPTION) {
669 recursive_exception = true;
670 // We threw an exception while trying to find the exception handler.
671 // Transfer the new exception to the exception handle which will
672 // be set into thread local storage, and do another lookup for an
673 // exception handler for this exception, this time starting at the
674 // BCI of the exception handler which caused the exception to be
675 // thrown (bugs 4307310 and 4546590). Set "exception" reference
676 // argument to ensure that the correct exception is thrown (4870175).
677 exception = Handle(THREAD, PENDING_EXCEPTION);
678 CLEAR_PENDING_EXCEPTION;
679 if (handler_bci >= 0) {
680 bci = handler_bci;
681 handler_bci = -1;
682 skip_scope_increment = true;
683 }
684 }
685 else {
686 recursive_exception = false;
687 }
688 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
689 sd = sd->sender();
690 if (sd != NULL) {
691 bci = sd->bci();
692 }
693 ++scope_depth;
694 }
695 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
696 }
697
698 // found handling method => lookup exception handler
699 int catch_pco = ret_pc - nm->code_begin();
700
701 ExceptionHandlerTable table(nm);
702 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
703 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
704 // Allow abbreviated catch tables. The idea is to allow a method
705 // to materialize its exceptions without committing to the exact
706 // routing of exceptions. In particular this is needed for adding
707 // a synthethic handler to unlock monitors when inlining
708 // synchonized methods since the unlock path isn't represented in
709 // the bytecodes.
710 t = table.entry_for(catch_pco, -1, 0);
711 }
712
713 #ifdef COMPILER1
714 if (t == NULL && nm->is_compiled_by_c1()) {
715 assert(nm->unwind_handler_begin() != NULL, "");
716 return nm->unwind_handler_begin();
717 }
718 #endif
719
720 if (t == NULL) {
721 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
722 tty->print_cr(" Exception:");
723 exception->print();
724 tty->cr();
725 tty->print_cr(" Compiled exception table :");
726 table.print();
727 nm->print_code();
728 guarantee(false, "missing exception handler");
729 return NULL;
730 }
731
732 return nm->code_begin() + t->pco();
733 }
734
735 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
736 // These errors occur only at call sites
737 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
738 JRT_END
739
740 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
741 // These errors occur only at call sites
742 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
743 JRT_END
744
745 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
746 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
747 JRT_END
748
749 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
750 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
751 JRT_END
752
753 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
754 // This entry point is effectively only used for NullPointerExceptions which occur at inline
755 // cache sites (when the callee activation is not yet set up) so we are at a call site
756 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
757 JRT_END
758
759 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
760 // We avoid using the normal exception construction in this case because
761 // it performs an upcall to Java, and we're already out of stack space.
762 klassOop k = SystemDictionary::StackOverflowError_klass();
763 oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
764 Handle exception (thread, exception_oop);
765 if (StackTraceInThrowable) {
766 java_lang_Throwable::fill_in_stack_trace(exception);
767 }
768 throw_and_post_jvmti_exception(thread, exception);
769 JRT_END
770
771 JRT_ENTRY(void, SharedRuntime::throw_WrongMethodTypeException(JavaThread* thread, oopDesc* required, oopDesc* actual))
772 assert(thread == JavaThread::current() && required->is_oop() && actual->is_oop(), "bad args");
773 ResourceMark rm;
774 char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual);
775 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_invoke_WrongMethodTypeException(), message);
776 JRT_END
777
778 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
779 address pc,
780 SharedRuntime::ImplicitExceptionKind exception_kind)
781 {
782 address target_pc = NULL;
783
784 if (Interpreter::contains(pc)) {
785 #ifdef CC_INTERP
786 // C++ interpreter doesn't throw implicit exceptions
787 ShouldNotReachHere();
788 #else
789 switch (exception_kind) {
790 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
791 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
792 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
793 default: ShouldNotReachHere();
794 }
795 #endif // !CC_INTERP
796 } else {
797 switch (exception_kind) {
798 case STACK_OVERFLOW: {
799 // Stack overflow only occurs upon frame setup; the callee is
800 // going to be unwound. Dispatch to a shared runtime stub
801 // which will cause the StackOverflowError to be fabricated
802 // and processed.
803 // For stack overflow in deoptimization blob, cleanup thread.
804 if (thread->deopt_mark() != NULL) {
805 Deoptimization::cleanup_deopt_info(thread, NULL);
806 }
807 return StubRoutines::throw_StackOverflowError_entry();
808 }
809
810 case IMPLICIT_NULL: {
811 if (VtableStubs::contains(pc)) {
812 // We haven't yet entered the callee frame. Fabricate an
813 // exception and begin dispatching it in the caller. Since
814 // the caller was at a call site, it's safe to destroy all
815 // caller-saved registers, as these entry points do.
816 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
817
818 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
819 if (vt_stub == NULL) return NULL;
820
821 if (vt_stub->is_abstract_method_error(pc)) {
822 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
823 return StubRoutines::throw_AbstractMethodError_entry();
824 } else {
825 return StubRoutines::throw_NullPointerException_at_call_entry();
826 }
827 } else {
828 CodeBlob* cb = CodeCache::find_blob(pc);
829
830 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
831 if (cb == NULL) return NULL;
832
833 // Exception happened in CodeCache. Must be either:
834 // 1. Inline-cache check in C2I handler blob,
835 // 2. Inline-cache check in nmethod, or
836 // 3. Implict null exception in nmethod
837
838 if (!cb->is_nmethod()) {
839 guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
840 "exception happened outside interpreter, nmethods and vtable stubs (1)");
841 // There is no handler here, so we will simply unwind.
842 return StubRoutines::throw_NullPointerException_at_call_entry();
843 }
844
845 // Otherwise, it's an nmethod. Consult its exception handlers.
846 nmethod* nm = (nmethod*)cb;
847 if (nm->inlinecache_check_contains(pc)) {
848 // exception happened inside inline-cache check code
849 // => the nmethod is not yet active (i.e., the frame
850 // is not set up yet) => use return address pushed by
851 // caller => don't push another return address
852 return StubRoutines::throw_NullPointerException_at_call_entry();
853 }
854
855 #ifndef PRODUCT
856 _implicit_null_throws++;
857 #endif
858 target_pc = nm->continuation_for_implicit_exception(pc);
859 // If there's an unexpected fault, target_pc might be NULL,
860 // in which case we want to fall through into the normal
861 // error handling code.
862 }
863
864 break; // fall through
865 }
866
867
868 case IMPLICIT_DIVIDE_BY_ZERO: {
869 nmethod* nm = CodeCache::find_nmethod(pc);
870 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
871 #ifndef PRODUCT
872 _implicit_div0_throws++;
873 #endif
874 target_pc = nm->continuation_for_implicit_exception(pc);
875 // If there's an unexpected fault, target_pc might be NULL,
876 // in which case we want to fall through into the normal
877 // error handling code.
878 break; // fall through
879 }
880
881 default: ShouldNotReachHere();
882 }
883
884 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
885
886 // for AbortVMOnException flag
887 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
888 if (exception_kind == IMPLICIT_NULL) {
889 Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
890 } else {
891 Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
892 }
893 return target_pc;
894 }
895
896 ShouldNotReachHere();
897 return NULL;
898 }
899
900
901 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
902 {
903 THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
904 }
905 JNI_END
906
907
908 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
909 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
910 }
911
912
913 #ifndef PRODUCT
914 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
915 const frame f = thread->last_frame();
916 assert(f.is_interpreted_frame(), "must be an interpreted frame");
917 #ifndef PRODUCT
918 methodHandle mh(THREAD, f.interpreter_frame_method());
919 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
920 #endif // !PRODUCT
921 return preserve_this_value;
922 JRT_END
923 #endif // !PRODUCT
924
925
926 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
927 os::yield_all(attempts);
928 JRT_END
929
930
931 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
932 assert(obj->is_oop(), "must be a valid oop");
933 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
934 instanceKlass::register_finalizer(instanceOop(obj), CHECK);
935 JRT_END
936
937
938 jlong SharedRuntime::get_java_tid(Thread* thread) {
939 if (thread != NULL) {
940 if (thread->is_Java_thread()) {
941 oop obj = ((JavaThread*)thread)->threadObj();
942 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
943 }
944 }
945 return 0;
946 }
947
948 /**
949 * This function ought to be a void function, but cannot be because
950 * it gets turned into a tail-call on sparc, which runs into dtrace bug
951 * 6254741. Once that is fixed we can remove the dummy return value.
952 */
953 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
954 return dtrace_object_alloc_base(Thread::current(), o);
955 }
956
957 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
958 assert(DTraceAllocProbes, "wrong call");
959 Klass* klass = o->blueprint();
960 int size = o->size();
961 Symbol* name = klass->name();
962 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
963 name->bytes(), name->utf8_length(), size * HeapWordSize);
964 return 0;
965 }
966
967 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
968 JavaThread* thread, methodOopDesc* method))
969 assert(DTraceMethodProbes, "wrong call");
970 Symbol* kname = method->klass_name();
971 Symbol* name = method->name();
972 Symbol* sig = method->signature();
973 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
974 kname->bytes(), kname->utf8_length(),
975 name->bytes(), name->utf8_length(),
976 sig->bytes(), sig->utf8_length());
977 return 0;
978 JRT_END
979
980 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
981 JavaThread* thread, methodOopDesc* method))
982 assert(DTraceMethodProbes, "wrong call");
983 Symbol* kname = method->klass_name();
984 Symbol* name = method->name();
985 Symbol* sig = method->signature();
986 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
987 kname->bytes(), kname->utf8_length(),
988 name->bytes(), name->utf8_length(),
989 sig->bytes(), sig->utf8_length());
990 return 0;
991 JRT_END
992
993
994 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
995 // for a call current in progress, i.e., arguments has been pushed on stack
996 // put callee has not been invoked yet. Used by: resolve virtual/static,
997 // vtable updates, etc. Caller frame must be compiled.
998 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
999 ResourceMark rm(THREAD);
1000
1001 // last java frame on stack (which includes native call frames)
1002 vframeStream vfst(thread, true); // Do not skip and javaCalls
1003
1004 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1005 }
1006
1007
1008 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1009 // for a call current in progress, i.e., arguments has been pushed on stack
1010 // but callee has not been invoked yet. Caller frame must be compiled.
1011 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1012 vframeStream& vfst,
1013 Bytecodes::Code& bc,
1014 CallInfo& callinfo, TRAPS) {
1015 Handle receiver;
1016 Handle nullHandle; //create a handy null handle for exception returns
1017
1018 assert(!vfst.at_end(), "Java frame must exist");
1019
1020 // Find caller and bci from vframe
1021 methodHandle caller (THREAD, vfst.method());
1022 int bci = vfst.bci();
1023
1024 // Find bytecode
1025 Bytecode_invoke bytecode(caller, bci);
1026 bc = bytecode.java_code();
1027 int bytecode_index = bytecode.index();
1028
1029 // Find receiver for non-static call
1030 if (bc != Bytecodes::_invokestatic) {
1031 // This register map must be update since we need to find the receiver for
1032 // compiled frames. The receiver might be in a register.
1033 RegisterMap reg_map2(thread);
1034 frame stubFrame = thread->last_frame();
1035 // Caller-frame is a compiled frame
1036 frame callerFrame = stubFrame.sender(®_map2);
1037
1038 methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1039 if (callee.is_null()) {
1040 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1041 }
1042 // Retrieve from a compiled argument list
1043 receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2));
1044
1045 if (receiver.is_null()) {
1046 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1047 }
1048 }
1049
1050 // Resolve method. This is parameterized by bytecode.
1051 constantPoolHandle constants (THREAD, caller->constants());
1052 assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
1053 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1054
1055 #ifdef ASSERT
1056 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1057 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
1058 assert(receiver.not_null(), "should have thrown exception");
1059 KlassHandle receiver_klass (THREAD, receiver->klass());
1060 klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1061 // klass is already loaded
1062 KlassHandle static_receiver_klass (THREAD, rk);
1063 assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
1064 if (receiver_klass->oop_is_instance()) {
1065 if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
1066 tty->print_cr("ERROR: Klass not yet initialized!!");
1067 receiver_klass.print();
1068 }
1069 assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1070 }
1071 }
1072 #endif
1073
1074 return receiver;
1075 }
1076
1077 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1078 ResourceMark rm(THREAD);
1079 // We need first to check if any Java activations (compiled, interpreted)
1080 // exist on the stack since last JavaCall. If not, we need
1081 // to get the target method from the JavaCall wrapper.
1082 vframeStream vfst(thread, true); // Do not skip any javaCalls
1083 methodHandle callee_method;
1084 if (vfst.at_end()) {
1085 // No Java frames were found on stack since we did the JavaCall.
1086 // Hence the stack can only contain an entry_frame. We need to
1087 // find the target method from the stub frame.
1088 RegisterMap reg_map(thread, false);
1089 frame fr = thread->last_frame();
1090 assert(fr.is_runtime_frame(), "must be a runtimeStub");
1091 fr = fr.sender(®_map);
1092 assert(fr.is_entry_frame(), "must be");
1093 // fr is now pointing to the entry frame.
1094 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1095 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1096 } else {
1097 Bytecodes::Code bc;
1098 CallInfo callinfo;
1099 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1100 callee_method = callinfo.selected_method();
1101 }
1102 assert(callee_method()->is_method(), "must be");
1103 return callee_method;
1104 }
1105
1106 // Resolves a call.
1107 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1108 bool is_virtual,
1109 bool is_optimized, TRAPS) {
1110 methodHandle callee_method;
1111 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1112 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1113 int retry_count = 0;
1114 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1115 callee_method->method_holder() != SystemDictionary::Object_klass()) {
1116 // If has a pending exception then there is no need to re-try to
1117 // resolve this method.
1118 // If the method has been redefined, we need to try again.
1119 // Hack: we have no way to update the vtables of arrays, so don't
1120 // require that java.lang.Object has been updated.
1121
1122 // It is very unlikely that method is redefined more than 100 times
1123 // in the middle of resolve. If it is looping here more than 100 times
1124 // means then there could be a bug here.
1125 guarantee((retry_count++ < 100),
1126 "Could not resolve to latest version of redefined method");
1127 // method is redefined in the middle of resolve so re-try.
1128 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1129 }
1130 }
1131 return callee_method;
1132 }
1133
1134 // Resolves a call. The compilers generate code for calls that go here
1135 // and are patched with the real destination of the call.
1136 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1137 bool is_virtual,
1138 bool is_optimized, TRAPS) {
1139
1140 ResourceMark rm(thread);
1141 RegisterMap cbl_map(thread, false);
1142 frame caller_frame = thread->last_frame().sender(&cbl_map);
1143
1144 CodeBlob* caller_cb = caller_frame.cb();
1145 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1146 nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1147 // make sure caller is not getting deoptimized
1148 // and removed before we are done with it.
1149 // CLEANUP - with lazy deopt shouldn't need this lock
1150 nmethodLocker caller_lock(caller_nm);
1151
1152
1153 // determine call info & receiver
1154 // note: a) receiver is NULL for static calls
1155 // b) an exception is thrown if receiver is NULL for non-static calls
1156 CallInfo call_info;
1157 Bytecodes::Code invoke_code = Bytecodes::_illegal;
1158 Handle receiver = find_callee_info(thread, invoke_code,
1159 call_info, CHECK_(methodHandle()));
1160 methodHandle callee_method = call_info.selected_method();
1161
1162 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
1163 ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
1164
1165 #ifndef PRODUCT
1166 // tracing/debugging/statistics
1167 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1168 (is_virtual) ? (&_resolve_virtual_ctr) :
1169 (&_resolve_static_ctr);
1170 Atomic::inc(addr);
1171
1172 if (TraceCallFixup) {
1173 ResourceMark rm(thread);
1174 tty->print("resolving %s%s (%s) call to",
1175 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1176 Bytecodes::name(invoke_code));
1177 callee_method->print_short_name(tty);
1178 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1179 }
1180 #endif
1181
1182 // JSR 292
1183 // If the resolved method is a MethodHandle invoke target the call
1184 // site must be a MethodHandle call site.
1185 if (callee_method->is_method_handle_invoke()) {
1186 assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1187 }
1188
1189 // Compute entry points. This might require generation of C2I converter
1190 // frames, so we cannot be holding any locks here. Furthermore, the
1191 // computation of the entry points is independent of patching the call. We
1192 // always return the entry-point, but we only patch the stub if the call has
1193 // not been deoptimized. Return values: For a virtual call this is an
1194 // (cached_oop, destination address) pair. For a static call/optimized
1195 // virtual this is just a destination address.
1196
1197 StaticCallInfo static_call_info;
1198 CompiledICInfo virtual_call_info;
1199
1200 // Make sure the callee nmethod does not get deoptimized and removed before
1201 // we are done patching the code.
1202 nmethod* callee_nm = callee_method->code();
1203 nmethodLocker nl_callee(callee_nm);
1204 #ifdef ASSERT
1205 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1206 #endif
1207
1208 if (is_virtual) {
1209 assert(receiver.not_null(), "sanity check");
1210 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1211 KlassHandle h_klass(THREAD, receiver->klass());
1212 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1213 is_optimized, static_bound, virtual_call_info,
1214 CHECK_(methodHandle()));
1215 } else {
1216 // static call
1217 CompiledStaticCall::compute_entry(callee_method, static_call_info);
1218 }
1219
1220 // grab lock, check for deoptimization and potentially patch caller
1221 {
1222 MutexLocker ml_patch(CompiledIC_lock);
1223
1224 // Now that we are ready to patch if the methodOop was redefined then
1225 // don't update call site and let the caller retry.
1226
1227 if (!callee_method->is_old()) {
1228 #ifdef ASSERT
1229 // We must not try to patch to jump to an already unloaded method.
1230 if (dest_entry_point != 0) {
1231 assert(CodeCache::find_blob(dest_entry_point) != NULL,
1232 "should not unload nmethod while locked");
1233 }
1234 #endif
1235 if (is_virtual) {
1236 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1237 if (inline_cache->is_clean()) {
1238 inline_cache->set_to_monomorphic(virtual_call_info);
1239 }
1240 } else {
1241 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1242 if (ssc->is_clean()) ssc->set(static_call_info);
1243 }
1244 }
1245
1246 } // unlock CompiledIC_lock
1247
1248 return callee_method;
1249 }
1250
1251
1252 // Inline caches exist only in compiled code
1253 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1254 #ifdef ASSERT
1255 RegisterMap reg_map(thread, false);
1256 frame stub_frame = thread->last_frame();
1257 assert(stub_frame.is_runtime_frame(), "sanity check");
1258 frame caller_frame = stub_frame.sender(®_map);
1259 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1260 assert(!caller_frame.is_ricochet_frame(), "unexpected frame");
1261 #endif /* ASSERT */
1262
1263 methodHandle callee_method;
1264 JRT_BLOCK
1265 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1266 // Return methodOop through TLS
1267 thread->set_vm_result(callee_method());
1268 JRT_BLOCK_END
1269 // return compiled code entry point after potential safepoints
1270 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1271 return callee_method->verified_code_entry();
1272 JRT_END
1273
1274
1275 // Handle call site that has been made non-entrant
1276 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1277 // 6243940 We might end up in here if the callee is deoptimized
1278 // as we race to call it. We don't want to take a safepoint if
1279 // the caller was interpreted because the caller frame will look
1280 // interpreted to the stack walkers and arguments are now
1281 // "compiled" so it is much better to make this transition
1282 // invisible to the stack walking code. The i2c path will
1283 // place the callee method in the callee_target. It is stashed
1284 // there because if we try and find the callee by normal means a
1285 // safepoint is possible and have trouble gc'ing the compiled args.
1286 RegisterMap reg_map(thread, false);
1287 frame stub_frame = thread->last_frame();
1288 assert(stub_frame.is_runtime_frame(), "sanity check");
1289 frame caller_frame = stub_frame.sender(®_map);
1290
1291 // MethodHandle invokes don't have a CompiledIC and should always
1292 // simply redispatch to the callee_target.
1293 address sender_pc = caller_frame.pc();
1294 CodeBlob* sender_cb = caller_frame.cb();
1295 nmethod* sender_nm = sender_cb->as_nmethod_or_null();
1296 bool is_mh_invoke_via_adapter = false; // Direct c2c call or via adapter?
1297 if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1298 // If the callee_target is set, then we have come here via an i2c
1299 // adapter.
1300 methodOop callee = thread->callee_target();
1301 if (callee != NULL) {
1302 assert(callee->is_method(), "sanity");
1303 is_mh_invoke_via_adapter = true;
1304 }
1305 }
1306
1307 if (caller_frame.is_interpreted_frame() ||
1308 caller_frame.is_entry_frame() ||
1309 caller_frame.is_ricochet_frame() ||
1310 is_mh_invoke_via_adapter) {
1311 methodOop callee = thread->callee_target();
1312 guarantee(callee != NULL && callee->is_method(), "bad handshake");
1313 thread->set_vm_result(callee);
1314 thread->set_callee_target(NULL);
1315 return callee->get_c2i_entry();
1316 }
1317
1318 // Must be compiled to compiled path which is safe to stackwalk
1319 methodHandle callee_method;
1320 JRT_BLOCK
1321 // Force resolving of caller (if we called from compiled frame)
1322 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1323 thread->set_vm_result(callee_method());
1324 JRT_BLOCK_END
1325 // return compiled code entry point after potential safepoints
1326 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1327 return callee_method->verified_code_entry();
1328 JRT_END
1329
1330
1331 // resolve a static call and patch code
1332 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1333 methodHandle callee_method;
1334 JRT_BLOCK
1335 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1336 thread->set_vm_result(callee_method());
1337 JRT_BLOCK_END
1338 // return compiled code entry point after potential safepoints
1339 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1340 return callee_method->verified_code_entry();
1341 JRT_END
1342
1343
1344 // resolve virtual call and update inline cache to monomorphic
1345 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1346 methodHandle callee_method;
1347 JRT_BLOCK
1348 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1349 thread->set_vm_result(callee_method());
1350 JRT_BLOCK_END
1351 // return compiled code entry point after potential safepoints
1352 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1353 return callee_method->verified_code_entry();
1354 JRT_END
1355
1356
1357 // Resolve a virtual call that can be statically bound (e.g., always
1358 // monomorphic, so it has no inline cache). Patch code to resolved target.
1359 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1360 methodHandle callee_method;
1361 JRT_BLOCK
1362 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1363 thread->set_vm_result(callee_method());
1364 JRT_BLOCK_END
1365 // return compiled code entry point after potential safepoints
1366 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1367 return callee_method->verified_code_entry();
1368 JRT_END
1369
1370
1371
1372
1373
1374 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1375 ResourceMark rm(thread);
1376 CallInfo call_info;
1377 Bytecodes::Code bc;
1378
1379 // receiver is NULL for static calls. An exception is thrown for NULL
1380 // receivers for non-static calls
1381 Handle receiver = find_callee_info(thread, bc, call_info,
1382 CHECK_(methodHandle()));
1383 // Compiler1 can produce virtual call sites that can actually be statically bound
1384 // If we fell thru to below we would think that the site was going megamorphic
1385 // when in fact the site can never miss. Worse because we'd think it was megamorphic
1386 // we'd try and do a vtable dispatch however methods that can be statically bound
1387 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1388 // reresolution of the call site (as if we did a handle_wrong_method and not an
1389 // plain ic_miss) and the site will be converted to an optimized virtual call site
1390 // never to miss again. I don't believe C2 will produce code like this but if it
1391 // did this would still be the correct thing to do for it too, hence no ifdef.
1392 //
1393 if (call_info.resolved_method()->can_be_statically_bound()) {
1394 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1395 if (TraceCallFixup) {
1396 RegisterMap reg_map(thread, false);
1397 frame caller_frame = thread->last_frame().sender(®_map);
1398 ResourceMark rm(thread);
1399 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1400 callee_method->print_short_name(tty);
1401 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1402 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1403 }
1404 return callee_method;
1405 }
1406
1407 methodHandle callee_method = call_info.selected_method();
1408
1409 bool should_be_mono = false;
1410
1411 #ifndef PRODUCT
1412 Atomic::inc(&_ic_miss_ctr);
1413
1414 // Statistics & Tracing
1415 if (TraceCallFixup) {
1416 ResourceMark rm(thread);
1417 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1418 callee_method->print_short_name(tty);
1419 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1420 }
1421
1422 if (ICMissHistogram) {
1423 MutexLocker m(VMStatistic_lock);
1424 RegisterMap reg_map(thread, false);
1425 frame f = thread->last_frame().real_sender(®_map);// skip runtime stub
1426 // produce statistics under the lock
1427 trace_ic_miss(f.pc());
1428 }
1429 #endif
1430
1431 // install an event collector so that when a vtable stub is created the
1432 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1433 // event can't be posted when the stub is created as locks are held
1434 // - instead the event will be deferred until the event collector goes
1435 // out of scope.
1436 JvmtiDynamicCodeEventCollector event_collector;
1437
1438 // Update inline cache to megamorphic. Skip update if caller has been
1439 // made non-entrant or we are called from interpreted.
1440 { MutexLocker ml_patch (CompiledIC_lock);
1441 RegisterMap reg_map(thread, false);
1442 frame caller_frame = thread->last_frame().sender(®_map);
1443 CodeBlob* cb = caller_frame.cb();
1444 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1445 // Not a non-entrant nmethod, so find inline_cache
1446 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1447 bool should_be_mono = false;
1448 if (inline_cache->is_optimized()) {
1449 if (TraceCallFixup) {
1450 ResourceMark rm(thread);
1451 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1452 callee_method->print_short_name(tty);
1453 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1454 }
1455 should_be_mono = true;
1456 } else {
1457 compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1458 if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1459
1460 if (receiver()->klass() == ic_oop->holder_klass()) {
1461 // This isn't a real miss. We must have seen that compiled code
1462 // is now available and we want the call site converted to a
1463 // monomorphic compiled call site.
1464 // We can't assert for callee_method->code() != NULL because it
1465 // could have been deoptimized in the meantime
1466 if (TraceCallFixup) {
1467 ResourceMark rm(thread);
1468 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1469 callee_method->print_short_name(tty);
1470 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1471 }
1472 should_be_mono = true;
1473 }
1474 }
1475 }
1476
1477 if (should_be_mono) {
1478
1479 // We have a path that was monomorphic but was going interpreted
1480 // and now we have (or had) a compiled entry. We correct the IC
1481 // by using a new icBuffer.
1482 CompiledICInfo info;
1483 KlassHandle receiver_klass(THREAD, receiver()->klass());
1484 inline_cache->compute_monomorphic_entry(callee_method,
1485 receiver_klass,
1486 inline_cache->is_optimized(),
1487 false,
1488 info, CHECK_(methodHandle()));
1489 inline_cache->set_to_monomorphic(info);
1490 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1491 // Change to megamorphic
1492 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1493 } else {
1494 // Either clean or megamorphic
1495 }
1496 }
1497 } // Release CompiledIC_lock
1498
1499 return callee_method;
1500 }
1501
1502 //
1503 // Resets a call-site in compiled code so it will get resolved again.
1504 // This routines handles both virtual call sites, optimized virtual call
1505 // sites, and static call sites. Typically used to change a call sites
1506 // destination from compiled to interpreted.
1507 //
1508 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1509 ResourceMark rm(thread);
1510 RegisterMap reg_map(thread, false);
1511 frame stub_frame = thread->last_frame();
1512 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1513 frame caller = stub_frame.sender(®_map);
1514
1515 // Do nothing if the frame isn't a live compiled frame.
1516 // nmethod could be deoptimized by the time we get here
1517 // so no update to the caller is needed.
1518
1519 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1520
1521 address pc = caller.pc();
1522 Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1523
1524 // Default call_addr is the location of the "basic" call.
1525 // Determine the address of the call we a reresolving. With
1526 // Inline Caches we will always find a recognizable call.
1527 // With Inline Caches disabled we may or may not find a
1528 // recognizable call. We will always find a call for static
1529 // calls and for optimized virtual calls. For vanilla virtual
1530 // calls it depends on the state of the UseInlineCaches switch.
1531 //
1532 // With Inline Caches disabled we can get here for a virtual call
1533 // for two reasons:
1534 // 1 - calling an abstract method. The vtable for abstract methods
1535 // will run us thru handle_wrong_method and we will eventually
1536 // end up in the interpreter to throw the ame.
1537 // 2 - a racing deoptimization. We could be doing a vanilla vtable
1538 // call and between the time we fetch the entry address and
1539 // we jump to it the target gets deoptimized. Similar to 1
1540 // we will wind up in the interprter (thru a c2i with c2).
1541 //
1542 address call_addr = NULL;
1543 {
1544 // Get call instruction under lock because another thread may be
1545 // busy patching it.
1546 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1547 // Location of call instruction
1548 if (NativeCall::is_call_before(pc)) {
1549 NativeCall *ncall = nativeCall_before(pc);
1550 call_addr = ncall->instruction_address();
1551 }
1552 }
1553
1554 // Check for static or virtual call
1555 bool is_static_call = false;
1556 nmethod* caller_nm = CodeCache::find_nmethod(pc);
1557 // Make sure nmethod doesn't get deoptimized and removed until
1558 // this is done with it.
1559 // CLEANUP - with lazy deopt shouldn't need this lock
1560 nmethodLocker nmlock(caller_nm);
1561
1562 if (call_addr != NULL) {
1563 RelocIterator iter(caller_nm, call_addr, call_addr+1);
1564 int ret = iter.next(); // Get item
1565 if (ret) {
1566 assert(iter.addr() == call_addr, "must find call");
1567 if (iter.type() == relocInfo::static_call_type) {
1568 is_static_call = true;
1569 } else {
1570 assert(iter.type() == relocInfo::virtual_call_type ||
1571 iter.type() == relocInfo::opt_virtual_call_type
1572 , "unexpected relocInfo. type");
1573 }
1574 } else {
1575 assert(!UseInlineCaches, "relocation info. must exist for this address");
1576 }
1577
1578 // Cleaning the inline cache will force a new resolve. This is more robust
1579 // than directly setting it to the new destination, since resolving of calls
1580 // is always done through the same code path. (experience shows that it
1581 // leads to very hard to track down bugs, if an inline cache gets updated
1582 // to a wrong method). It should not be performance critical, since the
1583 // resolve is only done once.
1584
1585 MutexLocker ml(CompiledIC_lock);
1586 //
1587 // We do not patch the call site if the nmethod has been made non-entrant
1588 // as it is a waste of time
1589 //
1590 if (caller_nm->is_in_use()) {
1591 if (is_static_call) {
1592 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1593 ssc->set_to_clean();
1594 } else {
1595 // compiled, dispatched call (which used to call an interpreted method)
1596 CompiledIC* inline_cache = CompiledIC_at(call_addr);
1597 inline_cache->set_to_clean();
1598 }
1599 }
1600 }
1601
1602 }
1603
1604 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1605
1606
1607 #ifndef PRODUCT
1608 Atomic::inc(&_wrong_method_ctr);
1609
1610 if (TraceCallFixup) {
1611 ResourceMark rm(thread);
1612 tty->print("handle_wrong_method reresolving call to");
1613 callee_method->print_short_name(tty);
1614 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1615 }
1616 #endif
1617
1618 return callee_method;
1619 }
1620
1621 // ---------------------------------------------------------------------------
1622 // We are calling the interpreter via a c2i. Normally this would mean that
1623 // we were called by a compiled method. However we could have lost a race
1624 // where we went int -> i2c -> c2i and so the caller could in fact be
1625 // interpreted. If the caller is compiled we attempt to patch the caller
1626 // so he no longer calls into the interpreter.
1627 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1628 methodOop moop(method);
1629
1630 address entry_point = moop->from_compiled_entry();
1631
1632 // It's possible that deoptimization can occur at a call site which hasn't
1633 // been resolved yet, in which case this function will be called from
1634 // an nmethod that has been patched for deopt and we can ignore the
1635 // request for a fixup.
1636 // Also it is possible that we lost a race in that from_compiled_entry
1637 // is now back to the i2c in that case we don't need to patch and if
1638 // we did we'd leap into space because the callsite needs to use
1639 // "to interpreter" stub in order to load up the methodOop. Don't
1640 // ask me how I know this...
1641
1642 CodeBlob* cb = CodeCache::find_blob(caller_pc);
1643 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1644 return;
1645 }
1646
1647 // The check above makes sure this is a nmethod.
1648 nmethod* nm = cb->as_nmethod_or_null();
1649 assert(nm, "must be");
1650
1651 // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
1652 // to implement MethodHandle actions.
1653 if (nm->is_method_handle_return(caller_pc)) {
1654 return;
1655 }
1656
1657 // There is a benign race here. We could be attempting to patch to a compiled
1658 // entry point at the same time the callee is being deoptimized. If that is
1659 // the case then entry_point may in fact point to a c2i and we'd patch the
1660 // call site with the same old data. clear_code will set code() to NULL
1661 // at the end of it. If we happen to see that NULL then we can skip trying
1662 // to patch. If we hit the window where the callee has a c2i in the
1663 // from_compiled_entry and the NULL isn't present yet then we lose the race
1664 // and patch the code with the same old data. Asi es la vida.
1665
1666 if (moop->code() == NULL) return;
1667
1668 if (nm->is_in_use()) {
1669
1670 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1671 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1672 if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1673 NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1674 //
1675 // bug 6281185. We might get here after resolving a call site to a vanilla
1676 // virtual call. Because the resolvee uses the verified entry it may then
1677 // see compiled code and attempt to patch the site by calling us. This would
1678 // then incorrectly convert the call site to optimized and its downhill from
1679 // there. If you're lucky you'll get the assert in the bugid, if not you've
1680 // just made a call site that could be megamorphic into a monomorphic site
1681 // for the rest of its life! Just another racing bug in the life of
1682 // fixup_callers_callsite ...
1683 //
1684 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1685 iter.next();
1686 assert(iter.has_current(), "must have a reloc at java call site");
1687 relocInfo::relocType typ = iter.reloc()->type();
1688 if ( typ != relocInfo::static_call_type &&
1689 typ != relocInfo::opt_virtual_call_type &&
1690 typ != relocInfo::static_stub_type) {
1691 return;
1692 }
1693 address destination = call->destination();
1694 if (destination != entry_point) {
1695 CodeBlob* callee = CodeCache::find_blob(destination);
1696 // callee == cb seems weird. It means calling interpreter thru stub.
1697 if (callee == cb || callee->is_adapter_blob()) {
1698 // static call or optimized virtual
1699 if (TraceCallFixup) {
1700 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1701 moop->print_short_name(tty);
1702 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1703 }
1704 call->set_destination_mt_safe(entry_point);
1705 } else {
1706 if (TraceCallFixup) {
1707 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1708 moop->print_short_name(tty);
1709 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1710 }
1711 // assert is too strong could also be resolve destinations.
1712 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1713 }
1714 } else {
1715 if (TraceCallFixup) {
1716 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1717 moop->print_short_name(tty);
1718 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1719 }
1720 }
1721 }
1722 }
1723
1724 IRT_END
1725
1726
1727 // same as JVM_Arraycopy, but called directly from compiled code
1728 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
1729 oopDesc* dest, jint dest_pos,
1730 jint length,
1731 JavaThread* thread)) {
1732 #ifndef PRODUCT
1733 _slow_array_copy_ctr++;
1734 #endif
1735 // Check if we have null pointers
1736 if (src == NULL || dest == NULL) {
1737 THROW(vmSymbols::java_lang_NullPointerException());
1738 }
1739 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
1740 // even though the copy_array API also performs dynamic checks to ensure
1741 // that src and dest are truly arrays (and are conformable).
1742 // The copy_array mechanism is awkward and could be removed, but
1743 // the compilers don't call this function except as a last resort,
1744 // so it probably doesn't matter.
1745 Klass::cast(src->klass())->copy_array((arrayOopDesc*)src, src_pos,
1746 (arrayOopDesc*)dest, dest_pos,
1747 length, thread);
1748 }
1749 JRT_END
1750
1751 char* SharedRuntime::generate_class_cast_message(
1752 JavaThread* thread, const char* objName) {
1753
1754 // Get target class name from the checkcast instruction
1755 vframeStream vfst(thread, true);
1756 assert(!vfst.at_end(), "Java frame must exist");
1757 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1758 Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1759 cc.index(), thread));
1760 return generate_class_cast_message(objName, targetKlass->external_name());
1761 }
1762
1763 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1764 oopDesc* required,
1765 oopDesc* actual) {
1766 if (TraceMethodHandles) {
1767 tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
1768 thread, required, actual);
1769 }
1770 assert(EnableInvokeDynamic, "");
1771 oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1772 char* message = NULL;
1773 if (singleKlass != NULL) {
1774 const char* objName = "argument or return value";
1775 if (actual != NULL) {
1776 // be flexible about the junk passed in:
1777 klassOop ak = (actual->is_klass()
1778 ? (klassOop)actual
1779 : actual->klass());
1780 objName = Klass::cast(ak)->external_name();
1781 }
1782 Klass* targetKlass = Klass::cast(required->is_klass()
1783 ? (klassOop)required
1784 : java_lang_Class::as_klassOop(required));
1785 message = generate_class_cast_message(objName, targetKlass->external_name());
1786 } else {
1787 // %%% need to get the MethodType string, without messing around too much
1788 const char* desc = NULL;
1789 // Get a signature from the invoke instruction
1790 const char* mhName = "method handle";
1791 const char* targetType = "the required signature";
1792 int targetArity = -1, mhArity = -1;
1793 vframeStream vfst(thread, true);
1794 if (!vfst.at_end()) {
1795 Bytecode_invoke call(vfst.method(), vfst.bci());
1796 methodHandle target;
1797 {
1798 EXCEPTION_MARK;
1799 target = call.static_target(THREAD);
1800 if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1801 }
1802 if (target.not_null()
1803 && target->is_method_handle_invoke()
1804 && required == target->method_handle_type()) {
1805 targetType = target->signature()->as_C_string();
1806 targetArity = ArgumentCount(target->signature()).size();
1807 }
1808 }
1809 KlassHandle kignore; int dmf_flags = 0;
1810 methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
1811 if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
1812 MethodHandles::_dmf_does_dispatch |
1813 MethodHandles::_dmf_from_interface)) != 0)
1814 actual_method = methodHandle(); // MH does extra binds, drops, etc.
1815 bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
1816 if (actual_method.not_null()) {
1817 mhName = actual_method->signature()->as_C_string();
1818 mhArity = ArgumentCount(actual_method->signature()).size();
1819 if (!actual_method->is_static()) mhArity += 1;
1820 } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
1821 oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
1822 mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
1823 stringStream st;
1824 java_lang_invoke_MethodType::print_signature(mhType, &st);
1825 mhName = st.as_string();
1826 }
1827 if (targetArity != -1 && targetArity != mhArity) {
1828 if (has_receiver && targetArity == mhArity-1)
1829 desc = " cannot be called without a receiver argument as ";
1830 else
1831 desc = " cannot be called with a different arity as ";
1832 }
1833 message = generate_class_cast_message(mhName, targetType,
1834 desc != NULL ? desc :
1835 " cannot be called as ");
1836 }
1837 if (TraceMethodHandles) {
1838 tty->print_cr("WrongMethodType => message=%s", message);
1839 }
1840 return message;
1841 }
1842
1843 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1844 oopDesc* required) {
1845 if (required == NULL) return NULL;
1846 if (required->klass() == SystemDictionary::Class_klass())
1847 return required;
1848 if (required->is_klass())
1849 return Klass::cast(klassOop(required))->java_mirror();
1850 return NULL;
1851 }
1852
1853
1854 char* SharedRuntime::generate_class_cast_message(
1855 const char* objName, const char* targetKlassName, const char* desc) {
1856 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1857
1858 char* message = NEW_RESOURCE_ARRAY(char, msglen);
1859 if (NULL == message) {
1860 // Shouldn't happen, but don't cause even more problems if it does
1861 message = const_cast<char*>(objName);
1862 } else {
1863 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1864 }
1865 return message;
1866 }
1867
1868 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1869 (void) JavaThread::current()->reguard_stack();
1870 JRT_END
1871
1872
1873 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1874 #ifndef PRODUCT
1875 int SharedRuntime::_monitor_enter_ctr=0;
1876 #endif
1877 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1878 oop obj(_obj);
1879 #ifndef PRODUCT
1880 _monitor_enter_ctr++; // monitor enter slow
1881 #endif
1882 if (PrintBiasedLockingStatistics) {
1883 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1884 }
1885 Handle h_obj(THREAD, obj);
1886 if (UseBiasedLocking) {
1887 // Retry fast entry if bias is revoked to avoid unnecessary inflation
1888 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1889 } else {
1890 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1891 }
1892 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1893 JRT_END
1894
1895 #ifndef PRODUCT
1896 int SharedRuntime::_monitor_exit_ctr=0;
1897 #endif
1898 // Handles the uncommon cases of monitor unlocking in compiled code
1899 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1900 oop obj(_obj);
1901 #ifndef PRODUCT
1902 _monitor_exit_ctr++; // monitor exit slow
1903 #endif
1904 Thread* THREAD = JavaThread::current();
1905 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1906 // testing was unable to ever fire the assert that guarded it so I have removed it.
1907 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1908 #undef MIGHT_HAVE_PENDING
1909 #ifdef MIGHT_HAVE_PENDING
1910 // Save and restore any pending_exception around the exception mark.
1911 // While the slow_exit must not throw an exception, we could come into
1912 // this routine with one set.
1913 oop pending_excep = NULL;
1914 const char* pending_file;
1915 int pending_line;
1916 if (HAS_PENDING_EXCEPTION) {
1917 pending_excep = PENDING_EXCEPTION;
1918 pending_file = THREAD->exception_file();
1919 pending_line = THREAD->exception_line();
1920 CLEAR_PENDING_EXCEPTION;
1921 }
1922 #endif /* MIGHT_HAVE_PENDING */
1923
1924 {
1925 // Exit must be non-blocking, and therefore no exceptions can be thrown.
1926 EXCEPTION_MARK;
1927 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1928 }
1929
1930 #ifdef MIGHT_HAVE_PENDING
1931 if (pending_excep != NULL) {
1932 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1933 }
1934 #endif /* MIGHT_HAVE_PENDING */
1935 JRT_END
1936
1937 #ifndef PRODUCT
1938
1939 void SharedRuntime::print_statistics() {
1940 ttyLocker ttyl;
1941 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
1942
1943 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
1944 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
1945 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1946
1947 SharedRuntime::print_ic_miss_histogram();
1948
1949 if (CountRemovableExceptions) {
1950 if (_nof_removable_exceptions > 0) {
1951 Unimplemented(); // this counter is not yet incremented
1952 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1953 }
1954 }
1955
1956 // Dump the JRT_ENTRY counters
1957 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1958 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1959 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1960 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1961 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1962 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1963 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1964
1965 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1966 tty->print_cr("%5d wrong method", _wrong_method_ctr );
1967 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1968 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1969 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1970
1971 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1972 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1973 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1974 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1975 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1976 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1977 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1978 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1979 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1980 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1981 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1982 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1983 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1984 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1985 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1986 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1987
1988 AdapterHandlerLibrary::print_statistics();
1989
1990 if (xtty != NULL) xtty->tail("statistics");
1991 }
1992
1993 inline double percent(int x, int y) {
1994 return 100.0 * x / MAX2(y, 1);
1995 }
1996
1997 class MethodArityHistogram {
1998 public:
1999 enum { MAX_ARITY = 256 };
2000 private:
2001 static int _arity_histogram[MAX_ARITY]; // histogram of #args
2002 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
2003 static int _max_arity; // max. arity seen
2004 static int _max_size; // max. arg size seen
2005
2006 static void add_method_to_histogram(nmethod* nm) {
2007 methodOop m = nm->method();
2008 ArgumentCount args(m->signature());
2009 int arity = args.size() + (m->is_static() ? 0 : 1);
2010 int argsize = m->size_of_parameters();
2011 arity = MIN2(arity, MAX_ARITY-1);
2012 argsize = MIN2(argsize, MAX_ARITY-1);
2013 int count = nm->method()->compiled_invocation_count();
2014 _arity_histogram[arity] += count;
2015 _size_histogram[argsize] += count;
2016 _max_arity = MAX2(_max_arity, arity);
2017 _max_size = MAX2(_max_size, argsize);
2018 }
2019
2020 void print_histogram_helper(int n, int* histo, const char* name) {
2021 const int N = MIN2(5, n);
2022 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2023 double sum = 0;
2024 double weighted_sum = 0;
2025 int i;
2026 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2027 double rest = sum;
2028 double percent = sum / 100;
2029 for (i = 0; i <= N; i++) {
2030 rest -= histo[i];
2031 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2032 }
2033 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2034 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2035 }
2036
2037 void print_histogram() {
2038 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2039 print_histogram_helper(_max_arity, _arity_histogram, "arity");
2040 tty->print_cr("\nSame for parameter size (in words):");
2041 print_histogram_helper(_max_size, _size_histogram, "size");
2042 tty->cr();
2043 }
2044
2045 public:
2046 MethodArityHistogram() {
2047 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2048 _max_arity = _max_size = 0;
2049 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2050 CodeCache::nmethods_do(add_method_to_histogram);
2051 print_histogram();
2052 }
2053 };
2054
2055 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2056 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2057 int MethodArityHistogram::_max_arity;
2058 int MethodArityHistogram::_max_size;
2059
2060 void SharedRuntime::print_call_statistics(int comp_total) {
2061 tty->print_cr("Calls from compiled code:");
2062 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2063 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2064 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2065 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
2066 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
2067 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2068 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2069 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
2070 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2071 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
2072 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2073 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2074 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
2075 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2076 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2077 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2078 tty->cr();
2079 tty->print_cr("Note 1: counter updates are not MT-safe.");
2080 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2081 tty->print_cr(" %% in nested categories are relative to their category");
2082 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
2083 tty->cr();
2084
2085 MethodArityHistogram h;
2086 }
2087 #endif
2088
2089
2090 // A simple wrapper class around the calling convention information
2091 // that allows sharing of adapters for the same calling convention.
2092 class AdapterFingerPrint : public CHeapObj {
2093 private:
2094 union {
2095 int _compact[3];
2096 int* _fingerprint;
2097 } _value;
2098 int _length; // A negative length indicates the fingerprint is in the compact form,
2099 // Otherwise _value._fingerprint is the array.
2100
2101 // Remap BasicTypes that are handled equivalently by the adapters.
2102 // These are correct for the current system but someday it might be
2103 // necessary to make this mapping platform dependent.
2104 static BasicType adapter_encoding(BasicType in) {
2105 assert((~0xf & in) == 0, "must fit in 4 bits");
2106 switch(in) {
2107 case T_BOOLEAN:
2108 case T_BYTE:
2109 case T_SHORT:
2110 case T_CHAR:
2111 // There are all promoted to T_INT in the calling convention
2112 return T_INT;
2113
2114 case T_OBJECT:
2115 case T_ARRAY:
2116 #ifdef _LP64
2117 return T_LONG;
2118 #else
2119 return T_INT;
2120 #endif
2121
2122 case T_INT:
2123 case T_LONG:
2124 case T_FLOAT:
2125 case T_DOUBLE:
2126 case T_VOID:
2127 return in;
2128
2129 default:
2130 ShouldNotReachHere();
2131 return T_CONFLICT;
2132 }
2133 }
2134
2135 public:
2136 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2137 // The fingerprint is based on the BasicType signature encoded
2138 // into an array of ints with four entries per int.
2139 int* ptr;
2140 int len = (total_args_passed + 3) >> 2;
2141 if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
2142 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2143 // Storing the signature encoded as signed chars hits about 98%
2144 // of the time.
2145 _length = -len;
2146 ptr = _value._compact;
2147 } else {
2148 _length = len;
2149 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
2150 ptr = _value._fingerprint;
2151 }
2152
2153 // Now pack the BasicTypes with 4 per int
2154 int sig_index = 0;
2155 for (int index = 0; index < len; index++) {
2156 int value = 0;
2157 for (int byte = 0; byte < 4; byte++) {
2158 if (sig_index < total_args_passed) {
2159 value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
2160 }
2161 }
2162 ptr[index] = value;
2163 }
2164 }
2165
2166 ~AdapterFingerPrint() {
2167 if (_length > 0) {
2168 FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2169 }
2170 }
2171
2172 int value(int index) {
2173 if (_length < 0) {
2174 return _value._compact[index];
2175 }
2176 return _value._fingerprint[index];
2177 }
2178 int length() {
2179 if (_length < 0) return -_length;
2180 return _length;
2181 }
2182
2183 bool is_compact() {
2184 return _length <= 0;
2185 }
2186
2187 unsigned int compute_hash() {
2188 int hash = 0;
2189 for (int i = 0; i < length(); i++) {
2190 int v = value(i);
2191 hash = (hash << 8) ^ v ^ (hash >> 5);
2192 }
2193 return (unsigned int)hash;
2194 }
2195
2196 const char* as_string() {
2197 stringStream st;
2198 for (int i = 0; i < length(); i++) {
2199 st.print(PTR_FORMAT, value(i));
2200 }
2201 return st.as_string();
2202 }
2203
2204 bool equals(AdapterFingerPrint* other) {
2205 if (other->_length != _length) {
2206 return false;
2207 }
2208 if (_length < 0) {
2209 return _value._compact[0] == other->_value._compact[0] &&
2210 _value._compact[1] == other->_value._compact[1] &&
2211 _value._compact[2] == other->_value._compact[2];
2212 } else {
2213 for (int i = 0; i < _length; i++) {
2214 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2215 return false;
2216 }
2217 }
2218 }
2219 return true;
2220 }
2221 };
2222
2223
2224 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2225 class AdapterHandlerTable : public BasicHashtable {
2226 friend class AdapterHandlerTableIterator;
2227
2228 private:
2229
2230 #ifndef PRODUCT
2231 static int _lookups; // number of calls to lookup
2232 static int _buckets; // number of buckets checked
2233 static int _equals; // number of buckets checked with matching hash
2234 static int _hits; // number of successful lookups
2235 static int _compact; // number of equals calls with compact signature
2236 #endif
2237
2238 AdapterHandlerEntry* bucket(int i) {
2239 return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
2240 }
2241
2242 public:
2243 AdapterHandlerTable()
2244 : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
2245
2246 // Create a new entry suitable for insertion in the table
2247 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2248 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
2249 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2250 return entry;
2251 }
2252
2253 // Insert an entry into the table
2254 void add(AdapterHandlerEntry* entry) {
2255 int index = hash_to_index(entry->hash());
2256 add_entry(index, entry);
2257 }
2258
2259 void free_entry(AdapterHandlerEntry* entry) {
2260 entry->deallocate();
2261 BasicHashtable::free_entry(entry);
2262 }
2263
2264 // Find a entry with the same fingerprint if it exists
2265 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2266 NOT_PRODUCT(_lookups++);
2267 AdapterFingerPrint fp(total_args_passed, sig_bt);
2268 unsigned int hash = fp.compute_hash();
2269 int index = hash_to_index(hash);
2270 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2271 NOT_PRODUCT(_buckets++);
2272 if (e->hash() == hash) {
2273 NOT_PRODUCT(_equals++);
2274 if (fp.equals(e->fingerprint())) {
2275 #ifndef PRODUCT
2276 if (fp.is_compact()) _compact++;
2277 _hits++;
2278 #endif
2279 return e;
2280 }
2281 }
2282 }
2283 return NULL;
2284 }
2285
2286 #ifndef PRODUCT
2287 void print_statistics() {
2288 ResourceMark rm;
2289 int longest = 0;
2290 int empty = 0;
2291 int total = 0;
2292 int nonempty = 0;
2293 for (int index = 0; index < table_size(); index++) {
2294 int count = 0;
2295 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2296 count++;
2297 }
2298 if (count != 0) nonempty++;
2299 if (count == 0) empty++;
2300 if (count > longest) longest = count;
2301 total += count;
2302 }
2303 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2304 empty, longest, total, total / (double)nonempty);
2305 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2306 _lookups, _buckets, _equals, _hits, _compact);
2307 }
2308 #endif
2309 };
2310
2311
2312 #ifndef PRODUCT
2313
2314 int AdapterHandlerTable::_lookups;
2315 int AdapterHandlerTable::_buckets;
2316 int AdapterHandlerTable::_equals;
2317 int AdapterHandlerTable::_hits;
2318 int AdapterHandlerTable::_compact;
2319
2320 #endif
2321
2322 class AdapterHandlerTableIterator : public StackObj {
2323 private:
2324 AdapterHandlerTable* _table;
2325 int _index;
2326 AdapterHandlerEntry* _current;
2327
2328 void scan() {
2329 while (_index < _table->table_size()) {
2330 AdapterHandlerEntry* a = _table->bucket(_index);
2331 _index++;
2332 if (a != NULL) {
2333 _current = a;
2334 return;
2335 }
2336 }
2337 }
2338
2339 public:
2340 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2341 scan();
2342 }
2343 bool has_next() {
2344 return _current != NULL;
2345 }
2346 AdapterHandlerEntry* next() {
2347 if (_current != NULL) {
2348 AdapterHandlerEntry* result = _current;
2349 _current = _current->next();
2350 if (_current == NULL) scan();
2351 return result;
2352 } else {
2353 return NULL;
2354 }
2355 }
2356 };
2357
2358
2359 // ---------------------------------------------------------------------------
2360 // Implementation of AdapterHandlerLibrary
2361 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2362 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2363 const int AdapterHandlerLibrary_size = 16*K;
2364 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2365
2366 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2367 // Should be called only when AdapterHandlerLibrary_lock is active.
2368 if (_buffer == NULL) // Initialize lazily
2369 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2370 return _buffer;
2371 }
2372
2373 void AdapterHandlerLibrary::initialize() {
2374 if (_adapters != NULL) return;
2375 _adapters = new AdapterHandlerTable();
2376
2377 // Create a special handler for abstract methods. Abstract methods
2378 // are never compiled so an i2c entry is somewhat meaningless, but
2379 // fill it in with something appropriate just in case. Pass handle
2380 // wrong method for the c2i transitions.
2381 address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2382 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2383 StubRoutines::throw_AbstractMethodError_entry(),
2384 wrong_method, wrong_method);
2385 }
2386
2387 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2388 address i2c_entry,
2389 address c2i_entry,
2390 address c2i_unverified_entry) {
2391 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2392 }
2393
2394 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2395 // Use customized signature handler. Need to lock around updates to
2396 // the AdapterHandlerTable (it is not safe for concurrent readers
2397 // and a single writer: this could be fixed if it becomes a
2398 // problem).
2399
2400 // Get the address of the ic_miss handlers before we grab the
2401 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2402 // was caused by the initialization of the stubs happening
2403 // while we held the lock and then notifying jvmti while
2404 // holding it. This just forces the initialization to be a little
2405 // earlier.
2406 address ic_miss = SharedRuntime::get_ic_miss_stub();
2407 assert(ic_miss != NULL, "must have handler");
2408
2409 ResourceMark rm;
2410
2411 NOT_PRODUCT(int insts_size);
2412 AdapterBlob* B = NULL;
2413 AdapterHandlerEntry* entry = NULL;
2414 AdapterFingerPrint* fingerprint = NULL;
2415 {
2416 MutexLocker mu(AdapterHandlerLibrary_lock);
2417 // make sure data structure is initialized
2418 initialize();
2419
2420 if (method->is_abstract()) {
2421 return _abstract_method_handler;
2422 }
2423
2424 // Fill in the signature array, for the calling-convention call.
2425 int total_args_passed = method->size_of_parameters(); // All args on stack
2426
2427 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2428 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2429 int i = 0;
2430 if (!method->is_static()) // Pass in receiver first
2431 sig_bt[i++] = T_OBJECT;
2432 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2433 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
2434 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2435 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
2436 }
2437 assert(i == total_args_passed, "");
2438
2439 // Lookup method signature's fingerprint
2440 entry = _adapters->lookup(total_args_passed, sig_bt);
2441
2442 #ifdef ASSERT
2443 AdapterHandlerEntry* shared_entry = NULL;
2444 if (VerifyAdapterSharing && entry != NULL) {
2445 shared_entry = entry;
2446 entry = NULL;
2447 }
2448 #endif
2449
2450 if (entry != NULL) {
2451 return entry;
2452 }
2453
2454 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2455 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2456
2457 // Make a C heap allocated version of the fingerprint to store in the adapter
2458 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2459
2460 // Create I2C & C2I handlers
2461
2462 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2463 if (buf != NULL) {
2464 CodeBuffer buffer(buf);
2465 short buffer_locs[20];
2466 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2467 sizeof(buffer_locs)/sizeof(relocInfo));
2468 MacroAssembler _masm(&buffer);
2469
2470 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2471 total_args_passed,
2472 comp_args_on_stack,
2473 sig_bt,
2474 regs,
2475 fingerprint);
2476
2477 #ifdef ASSERT
2478 if (VerifyAdapterSharing) {
2479 if (shared_entry != NULL) {
2480 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2481 "code must match");
2482 // Release the one just created and return the original
2483 _adapters->free_entry(entry);
2484 return shared_entry;
2485 } else {
2486 entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2487 }
2488 }
2489 #endif
2490
2491 B = AdapterBlob::create(&buffer);
2492 NOT_PRODUCT(insts_size = buffer.insts_size());
2493 }
2494 if (B == NULL) {
2495 // CodeCache is full, disable compilation
2496 // Ought to log this but compile log is only per compile thread
2497 // and we're some non descript Java thread.
2498 MutexUnlocker mu(AdapterHandlerLibrary_lock);
2499 CompileBroker::handle_full_code_cache();
2500 return NULL; // Out of CodeCache space
2501 }
2502 entry->relocate(B->content_begin());
2503 #ifndef PRODUCT
2504 // debugging suppport
2505 if (PrintAdapterHandlers) {
2506 tty->cr();
2507 tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2508 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2509 method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
2510 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2511 Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
2512 }
2513 #endif
2514
2515 _adapters->add(entry);
2516 }
2517 // Outside of the lock
2518 if (B != NULL) {
2519 char blob_id[256];
2520 jio_snprintf(blob_id,
2521 sizeof(blob_id),
2522 "%s(%s)@" PTR_FORMAT,
2523 B->name(),
2524 fingerprint->as_string(),
2525 B->content_begin());
2526 Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2527
2528 if (JvmtiExport::should_post_dynamic_code_generated()) {
2529 JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2530 }
2531 }
2532 return entry;
2533 }
2534
2535 void AdapterHandlerEntry::relocate(address new_base) {
2536 ptrdiff_t delta = new_base - _i2c_entry;
2537 _i2c_entry += delta;
2538 _c2i_entry += delta;
2539 _c2i_unverified_entry += delta;
2540 }
2541
2542
2543 void AdapterHandlerEntry::deallocate() {
2544 delete _fingerprint;
2545 #ifdef ASSERT
2546 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2547 if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2548 #endif
2549 }
2550
2551
2552 #ifdef ASSERT
2553 // Capture the code before relocation so that it can be compared
2554 // against other versions. If the code is captured after relocation
2555 // then relative instructions won't be equivalent.
2556 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2557 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2558 _code_length = length;
2559 memcpy(_saved_code, buffer, length);
2560 _total_args_passed = total_args_passed;
2561 _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2562 memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2563 }
2564
2565
2566 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2567 if (length != _code_length) {
2568 return false;
2569 }
2570 for (int i = 0; i < length; i++) {
2571 if (buffer[i] != _saved_code[i]) {
2572 return false;
2573 }
2574 }
2575 return true;
2576 }
2577 #endif
2578
2579
2580 // Create a native wrapper for this native method. The wrapper converts the
2581 // java compiled calling convention to the native convention, handlizes
2582 // arguments, and transitions to native. On return from the native we transition
2583 // back to java blocking if a safepoint is in progress.
2584 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2585 ResourceMark rm;
2586 nmethod* nm = NULL;
2587
2588 assert(method->has_native_function(), "must have something valid to call!");
2589
2590 {
2591 // perform the work while holding the lock, but perform any printing outside the lock
2592 MutexLocker mu(AdapterHandlerLibrary_lock);
2593 // See if somebody beat us to it
2594 nm = method->code();
2595 if (nm) {
2596 return nm;
2597 }
2598
2599 ResourceMark rm;
2600
2601 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2602 if (buf != NULL) {
2603 CodeBuffer buffer(buf);
2604 double locs_buf[20];
2605 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2606 MacroAssembler _masm(&buffer);
2607
2608 // Fill in the signature array, for the calling-convention call.
2609 int total_args_passed = method->size_of_parameters();
2610
2611 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2612 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2613 int i=0;
2614 if( !method->is_static() ) // Pass in receiver first
2615 sig_bt[i++] = T_OBJECT;
2616 SignatureStream ss(method->signature());
2617 for( ; !ss.at_return_type(); ss.next()) {
2618 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
2619 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2620 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
2621 }
2622 assert( i==total_args_passed, "" );
2623 BasicType ret_type = ss.type();
2624
2625 // Now get the compiled-Java layout as input arguments
2626 int comp_args_on_stack;
2627 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2628
2629 // Generate the compiled-to-native wrapper code
2630 nm = SharedRuntime::generate_native_wrapper(&_masm,
2631 method,
2632 compile_id,
2633 total_args_passed,
2634 comp_args_on_stack,
2635 sig_bt,regs,
2636 ret_type);
2637 }
2638 }
2639
2640 // Must unlock before calling set_code
2641
2642 // Install the generated code.
2643 if (nm != NULL) {
2644 if (PrintCompilation) {
2645 ttyLocker ttyl;
2646 CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2647 }
2648 method->set_code(method, nm);
2649 nm->post_compiled_method_load_event();
2650 } else {
2651 // CodeCache is full, disable compilation
2652 CompileBroker::handle_full_code_cache();
2653 }
2654 return nm;
2655 }
2656
2657 #ifdef HAVE_DTRACE_H
2658 // Create a dtrace nmethod for this method. The wrapper converts the
2659 // java compiled calling convention to the native convention, makes a dummy call
2660 // (actually nops for the size of the call instruction, which become a trap if
2661 // probe is enabled). The returns to the caller. Since this all looks like a
2662 // leaf no thread transition is needed.
2663
2664 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2665 ResourceMark rm;
2666 nmethod* nm = NULL;
2667
2668 if (PrintCompilation) {
2669 ttyLocker ttyl;
2670 tty->print("--- n%s ");
2671 method->print_short_name(tty);
2672 if (method->is_static()) {
2673 tty->print(" (static)");
2674 }
2675 tty->cr();
2676 }
2677
2678 {
2679 // perform the work while holding the lock, but perform any printing
2680 // outside the lock
2681 MutexLocker mu(AdapterHandlerLibrary_lock);
2682 // See if somebody beat us to it
2683 nm = method->code();
2684 if (nm) {
2685 return nm;
2686 }
2687
2688 ResourceMark rm;
2689
2690 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2691 if (buf != NULL) {
2692 CodeBuffer buffer(buf);
2693 // Need a few relocation entries
2694 double locs_buf[20];
2695 buffer.insts()->initialize_shared_locs(
2696 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2697 MacroAssembler _masm(&buffer);
2698
2699 // Generate the compiled-to-native wrapper code
2700 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2701 }
2702 }
2703 return nm;
2704 }
2705
2706 // the dtrace method needs to convert java lang string to utf8 string.
2707 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2708 typeArrayOop jlsValue = java_lang_String::value(src);
2709 int jlsOffset = java_lang_String::offset(src);
2710 int jlsLen = java_lang_String::length(src);
2711 jchar* jlsPos = (jlsLen == 0) ? NULL :
2712 jlsValue->char_at_addr(jlsOffset);
2713 assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2714 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2715 }
2716 #endif // ndef HAVE_DTRACE_H
2717
2718 // -------------------------------------------------------------------------
2719 // Java-Java calling convention
2720 // (what you use when Java calls Java)
2721
2722 //------------------------------name_for_receiver----------------------------------
2723 // For a given signature, return the VMReg for parameter 0.
2724 VMReg SharedRuntime::name_for_receiver() {
2725 VMRegPair regs;
2726 BasicType sig_bt = T_OBJECT;
2727 (void) java_calling_convention(&sig_bt, ®s, 1, true);
2728 // Return argument 0 register. In the LP64 build pointers
2729 // take 2 registers, but the VM wants only the 'main' name.
2730 return regs.first();
2731 }
2732
2733 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
2734 // This method is returning a data structure allocating as a
2735 // ResourceObject, so do not put any ResourceMarks in here.
2736 char *s = sig->as_C_string();
2737 int len = (int)strlen(s);
2738 *s++; len--; // Skip opening paren
2739 char *t = s+len;
2740 while( *(--t) != ')' ) ; // Find close paren
2741
2742 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2743 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2744 int cnt = 0;
2745 if (has_receiver) {
2746 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2747 }
2748
2749 while( s < t ) {
2750 switch( *s++ ) { // Switch on signature character
2751 case 'B': sig_bt[cnt++] = T_BYTE; break;
2752 case 'C': sig_bt[cnt++] = T_CHAR; break;
2753 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
2754 case 'F': sig_bt[cnt++] = T_FLOAT; break;
2755 case 'I': sig_bt[cnt++] = T_INT; break;
2756 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
2757 case 'S': sig_bt[cnt++] = T_SHORT; break;
2758 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2759 case 'V': sig_bt[cnt++] = T_VOID; break;
2760 case 'L': // Oop
2761 while( *s++ != ';' ) ; // Skip signature
2762 sig_bt[cnt++] = T_OBJECT;
2763 break;
2764 case '[': { // Array
2765 do { // Skip optional size
2766 while( *s >= '0' && *s <= '9' ) s++;
2767 } while( *s++ == '[' ); // Nested arrays?
2768 // Skip element type
2769 if( s[-1] == 'L' )
2770 while( *s++ != ';' ) ; // Skip signature
2771 sig_bt[cnt++] = T_ARRAY;
2772 break;
2773 }
2774 default : ShouldNotReachHere();
2775 }
2776 }
2777 assert( cnt < 256, "grow table size" );
2778
2779 int comp_args_on_stack;
2780 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2781
2782 // the calling convention doesn't count out_preserve_stack_slots so
2783 // we must add that in to get "true" stack offsets.
2784
2785 if (comp_args_on_stack) {
2786 for (int i = 0; i < cnt; i++) {
2787 VMReg reg1 = regs[i].first();
2788 if( reg1->is_stack()) {
2789 // Yuck
2790 reg1 = reg1->bias(out_preserve_stack_slots());
2791 }
2792 VMReg reg2 = regs[i].second();
2793 if( reg2->is_stack()) {
2794 // Yuck
2795 reg2 = reg2->bias(out_preserve_stack_slots());
2796 }
2797 regs[i].set_pair(reg2, reg1);
2798 }
2799 }
2800
2801 // results
2802 *arg_size = cnt;
2803 return regs;
2804 }
2805
2806 // OSR Migration Code
2807 //
2808 // This code is used convert interpreter frames into compiled frames. It is
2809 // called from very start of a compiled OSR nmethod. A temp array is
2810 // allocated to hold the interesting bits of the interpreter frame. All
2811 // active locks are inflated to allow them to move. The displaced headers and
2812 // active interpeter locals are copied into the temp buffer. Then we return
2813 // back to the compiled code. The compiled code then pops the current
2814 // interpreter frame off the stack and pushes a new compiled frame. Then it
2815 // copies the interpreter locals and displaced headers where it wants.
2816 // Finally it calls back to free the temp buffer.
2817 //
2818 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2819
2820 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2821
2822 #ifdef IA64
2823 ShouldNotReachHere(); // NYI
2824 #endif /* IA64 */
2825
2826 //
2827 // This code is dependent on the memory layout of the interpreter local
2828 // array and the monitors. On all of our platforms the layout is identical
2829 // so this code is shared. If some platform lays the their arrays out
2830 // differently then this code could move to platform specific code or
2831 // the code here could be modified to copy items one at a time using
2832 // frame accessor methods and be platform independent.
2833
2834 frame fr = thread->last_frame();
2835 assert( fr.is_interpreted_frame(), "" );
2836 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2837
2838 // Figure out how many monitors are active.
2839 int active_monitor_count = 0;
2840 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2841 kptr < fr.interpreter_frame_monitor_begin();
2842 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2843 if( kptr->obj() != NULL ) active_monitor_count++;
2844 }
2845
2846 // QQQ we could place number of active monitors in the array so that compiled code
2847 // could double check it.
2848
2849 methodOop moop = fr.interpreter_frame_method();
2850 int max_locals = moop->max_locals();
2851 // Allocate temp buffer, 1 word per local & 2 per active monitor
2852 int buf_size_words = max_locals + active_monitor_count*2;
2853 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2854
2855 // Copy the locals. Order is preserved so that loading of longs works.
2856 // Since there's no GC I can copy the oops blindly.
2857 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2858 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2859 (HeapWord*)&buf[0],
2860 max_locals);
2861
2862 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
2863 int i = max_locals;
2864 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2865 kptr2 < fr.interpreter_frame_monitor_begin();
2866 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2867 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
2868 BasicLock *lock = kptr2->lock();
2869 // Inflate so the displaced header becomes position-independent
2870 if (lock->displaced_header()->is_unlocked())
2871 ObjectSynchronizer::inflate_helper(kptr2->obj());
2872 // Now the displaced header is free to move
2873 buf[i++] = (intptr_t)lock->displaced_header();
2874 buf[i++] = (intptr_t)kptr2->obj();
2875 }
2876 }
2877 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2878
2879 return buf;
2880 JRT_END
2881
2882 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2883 FREE_C_HEAP_ARRAY(intptr_t,buf);
2884 JRT_END
2885
2886 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2887 AdapterHandlerTableIterator iter(_adapters);
2888 while (iter.has_next()) {
2889 AdapterHandlerEntry* a = iter.next();
2890 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2891 }
2892 return false;
2893 }
2894
2895 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2896 AdapterHandlerTableIterator iter(_adapters);
2897 while (iter.has_next()) {
2898 AdapterHandlerEntry* a = iter.next();
2899 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2900 st->print("Adapter for signature: ");
2901 st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2902 a->fingerprint()->as_string(),
2903 a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2904
2905 return;
2906 }
2907 }
2908 assert(false, "Should have found handler");
2909 }
2910
2911 #ifndef PRODUCT
2912
2913 void AdapterHandlerLibrary::print_statistics() {
2914 _adapters->print_statistics();
2915 }
2916
2917 #endif /* PRODUCT */