1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/interpreterRuntime.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/forte.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiRedefineClassesTrace.hpp"
  42 #include "prims/methodHandles.hpp"
  43 #include "prims/nativeLookup.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/vframe.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/dtrace.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/hashtable.inline.hpp"
  58 #include "utilities/xmlstream.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "nativeInst_x86.hpp"
  61 # include "vmreg_x86.inline.hpp"
  62 #endif
  63 #ifdef TARGET_ARCH_sparc
  64 # include "nativeInst_sparc.hpp"
  65 # include "vmreg_sparc.inline.hpp"
  66 #endif
  67 #ifdef TARGET_ARCH_zero
  68 # include "nativeInst_zero.hpp"
  69 # include "vmreg_zero.inline.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_arm
  72 # include "nativeInst_arm.hpp"
  73 # include "vmreg_arm.inline.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_ppc
  76 # include "nativeInst_ppc.hpp"
  77 # include "vmreg_ppc.inline.hpp"
  78 #endif
  79 #ifdef COMPILER1
  80 #include "c1/c1_Runtime1.hpp"
  81 #endif
  82 
  83 // Shared stub locations
  84 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  85 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  89 
  90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  91 RicochetBlob*       SharedRuntime::_ricochet_blob;
  92 
  93 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  95 
  96 #ifdef COMPILER2
  97 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  98 #endif // COMPILER2
  99 
 100 
 101 //----------------------------generate_stubs-----------------------------------
 102 void SharedRuntime::generate_stubs() {
 103   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
 104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
 105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
 106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
 107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
 108 
 109   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false);
 110   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true);
 111 
 112   generate_ricochet_blob();
 113   generate_deopt_blob();
 114 
 115 #ifdef COMPILER2
 116   generate_uncommon_trap_blob();
 117 #endif // COMPILER2
 118 }
 119 
 120 //----------------------------generate_ricochet_blob---------------------------
 121 void SharedRuntime::generate_ricochet_blob() {
 122   if (!EnableInvokeDynamic)  return;  // leave it as a null
 123 
 124 #ifndef TARGET_ARCH_NYI_6939861
 125   // allocate space for the code
 126   ResourceMark rm;
 127   // setup code generation tools
 128   CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256);  // XXX x86 LP64L: 512, 512
 129   MacroAssembler* masm = new MacroAssembler(&buffer);
 130 
 131   int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1;
 132   MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words);
 133 
 134   // -------------
 135   // make sure all code is generated
 136   masm->flush();
 137 
 138   // failed to generate?
 139   if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) {
 140     assert(false, "bad ricochet blob");
 141     return;
 142   }
 143 
 144   _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
 145 #endif
 146 }
 147 
 148 
 149 #include <math.h>
 150 
 151 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 152 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 153                       char*, int, char*, int, char*, int);
 154 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 155                       char*, int, char*, int, char*, int);
 156 
 157 // Implementation of SharedRuntime
 158 
 159 #ifndef PRODUCT
 160 // For statistics
 161 int SharedRuntime::_ic_miss_ctr = 0;
 162 int SharedRuntime::_wrong_method_ctr = 0;
 163 int SharedRuntime::_resolve_static_ctr = 0;
 164 int SharedRuntime::_resolve_virtual_ctr = 0;
 165 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 166 int SharedRuntime::_implicit_null_throws = 0;
 167 int SharedRuntime::_implicit_div0_throws = 0;
 168 int SharedRuntime::_throw_null_ctr = 0;
 169 
 170 int SharedRuntime::_nof_normal_calls = 0;
 171 int SharedRuntime::_nof_optimized_calls = 0;
 172 int SharedRuntime::_nof_inlined_calls = 0;
 173 int SharedRuntime::_nof_megamorphic_calls = 0;
 174 int SharedRuntime::_nof_static_calls = 0;
 175 int SharedRuntime::_nof_inlined_static_calls = 0;
 176 int SharedRuntime::_nof_interface_calls = 0;
 177 int SharedRuntime::_nof_optimized_interface_calls = 0;
 178 int SharedRuntime::_nof_inlined_interface_calls = 0;
 179 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 180 int SharedRuntime::_nof_removable_exceptions = 0;
 181 
 182 int SharedRuntime::_new_instance_ctr=0;
 183 int SharedRuntime::_new_array_ctr=0;
 184 int SharedRuntime::_multi1_ctr=0;
 185 int SharedRuntime::_multi2_ctr=0;
 186 int SharedRuntime::_multi3_ctr=0;
 187 int SharedRuntime::_multi4_ctr=0;
 188 int SharedRuntime::_multi5_ctr=0;
 189 int SharedRuntime::_mon_enter_stub_ctr=0;
 190 int SharedRuntime::_mon_exit_stub_ctr=0;
 191 int SharedRuntime::_mon_enter_ctr=0;
 192 int SharedRuntime::_mon_exit_ctr=0;
 193 int SharedRuntime::_partial_subtype_ctr=0;
 194 int SharedRuntime::_jbyte_array_copy_ctr=0;
 195 int SharedRuntime::_jshort_array_copy_ctr=0;
 196 int SharedRuntime::_jint_array_copy_ctr=0;
 197 int SharedRuntime::_jlong_array_copy_ctr=0;
 198 int SharedRuntime::_oop_array_copy_ctr=0;
 199 int SharedRuntime::_checkcast_array_copy_ctr=0;
 200 int SharedRuntime::_unsafe_array_copy_ctr=0;
 201 int SharedRuntime::_generic_array_copy_ctr=0;
 202 int SharedRuntime::_slow_array_copy_ctr=0;
 203 int SharedRuntime::_find_handler_ctr=0;
 204 int SharedRuntime::_rethrow_ctr=0;
 205 
 206 int     SharedRuntime::_ICmiss_index                    = 0;
 207 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 208 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 209 
 210 
 211 void SharedRuntime::trace_ic_miss(address at) {
 212   for (int i = 0; i < _ICmiss_index; i++) {
 213     if (_ICmiss_at[i] == at) {
 214       _ICmiss_count[i]++;
 215       return;
 216     }
 217   }
 218   int index = _ICmiss_index++;
 219   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 220   _ICmiss_at[index] = at;
 221   _ICmiss_count[index] = 1;
 222 }
 223 
 224 void SharedRuntime::print_ic_miss_histogram() {
 225   if (ICMissHistogram) {
 226     tty->print_cr ("IC Miss Histogram:");
 227     int tot_misses = 0;
 228     for (int i = 0; i < _ICmiss_index; i++) {
 229       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 230       tot_misses += _ICmiss_count[i];
 231     }
 232     tty->print_cr ("Total IC misses: %7d", tot_misses);
 233   }
 234 }
 235 #endif // PRODUCT
 236 
 237 #ifndef SERIALGC
 238 
 239 // G1 write-barrier pre: executed before a pointer store.
 240 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 241   if (orig == NULL) {
 242     assert(false, "should be optimized out");
 243     return;
 244   }
 245   assert(orig->is_oop(true /* ignore mark word */), "Error");
 246   // store the original value that was in the field reference
 247   thread->satb_mark_queue().enqueue(orig);
 248 JRT_END
 249 
 250 // G1 write-barrier post: executed after a pointer store.
 251 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 252   thread->dirty_card_queue().enqueue(card_addr);
 253 JRT_END
 254 
 255 #endif // !SERIALGC
 256 
 257 
 258 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 259   return x * y;
 260 JRT_END
 261 
 262 
 263 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 264   if (x == min_jlong && y == CONST64(-1)) {
 265     return x;
 266   } else {
 267     return x / y;
 268   }
 269 JRT_END
 270 
 271 
 272 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 273   if (x == min_jlong && y == CONST64(-1)) {
 274     return 0;
 275   } else {
 276     return x % y;
 277   }
 278 JRT_END
 279 
 280 
 281 const juint  float_sign_mask  = 0x7FFFFFFF;
 282 const juint  float_infinity   = 0x7F800000;
 283 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 284 const julong double_infinity  = CONST64(0x7FF0000000000000);
 285 
 286 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 287 #ifdef _WIN64
 288   // 64-bit Windows on amd64 returns the wrong values for
 289   // infinity operands.
 290   union { jfloat f; juint i; } xbits, ybits;
 291   xbits.f = x;
 292   ybits.f = y;
 293   // x Mod Infinity == x unless x is infinity
 294   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 295        ((ybits.i & float_sign_mask) == float_infinity) ) {
 296     return x;
 297   }
 298 #endif
 299   return ((jfloat)fmod((double)x,(double)y));
 300 JRT_END
 301 
 302 
 303 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 304 #ifdef _WIN64
 305   union { jdouble d; julong l; } xbits, ybits;
 306   xbits.d = x;
 307   ybits.d = y;
 308   // x Mod Infinity == x unless x is infinity
 309   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 310        ((ybits.l & double_sign_mask) == double_infinity) ) {
 311     return x;
 312   }
 313 #endif
 314   return ((jdouble)fmod((double)x,(double)y));
 315 JRT_END
 316 
 317 #ifdef __SOFTFP__
 318 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 319   return x + y;
 320 JRT_END
 321 
 322 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 323   return x - y;
 324 JRT_END
 325 
 326 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 327   return x * y;
 328 JRT_END
 329 
 330 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 331   return x / y;
 332 JRT_END
 333 
 334 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 335   return x + y;
 336 JRT_END
 337 
 338 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 339   return x - y;
 340 JRT_END
 341 
 342 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 343   return x * y;
 344 JRT_END
 345 
 346 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 347   return x / y;
 348 JRT_END
 349 
 350 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 351   return (jfloat)x;
 352 JRT_END
 353 
 354 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 355   return (jdouble)x;
 356 JRT_END
 357 
 358 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 359   return (jdouble)x;
 360 JRT_END
 361 
 362 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 363   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 364 JRT_END
 365 
 366 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 367   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 368 JRT_END
 369 
 370 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 371   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 372 JRT_END
 373 
 374 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 375   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 376 JRT_END
 377 
 378 // Functions to return the opposite of the aeabi functions for nan.
 379 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 380   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 381 JRT_END
 382 
 383 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 384   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 385 JRT_END
 386 
 387 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 388   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 389 JRT_END
 390 
 391 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 392   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 393 JRT_END
 394 
 395 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 396   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 397 JRT_END
 398 
 399 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 400   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 401 JRT_END
 402 
 403 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 404   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 405 JRT_END
 406 
 407 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 408   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 409 JRT_END
 410 
 411 // Intrinsics make gcc generate code for these.
 412 float  SharedRuntime::fneg(float f)   {
 413   return -f;
 414 }
 415 
 416 double SharedRuntime::dneg(double f)  {
 417   return -f;
 418 }
 419 
 420 #endif // __SOFTFP__
 421 
 422 #if defined(__SOFTFP__) || defined(E500V2)
 423 // Intrinsics make gcc generate code for these.
 424 double SharedRuntime::dabs(double f)  {
 425   return (f <= (double)0.0) ? (double)0.0 - f : f;
 426 }
 427 
 428 #endif
 429 
 430 #if defined(__SOFTFP__) || defined(PPC)
 431 double SharedRuntime::dsqrt(double f) {
 432   return sqrt(f);
 433 }
 434 #endif
 435 
 436 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 437   if (g_isnan(x))
 438     return 0;
 439   if (x >= (jfloat) max_jint)
 440     return max_jint;
 441   if (x <= (jfloat) min_jint)
 442     return min_jint;
 443   return (jint) x;
 444 JRT_END
 445 
 446 
 447 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 448   if (g_isnan(x))
 449     return 0;
 450   if (x >= (jfloat) max_jlong)
 451     return max_jlong;
 452   if (x <= (jfloat) min_jlong)
 453     return min_jlong;
 454   return (jlong) x;
 455 JRT_END
 456 
 457 
 458 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 459   if (g_isnan(x))
 460     return 0;
 461   if (x >= (jdouble) max_jint)
 462     return max_jint;
 463   if (x <= (jdouble) min_jint)
 464     return min_jint;
 465   return (jint) x;
 466 JRT_END
 467 
 468 
 469 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 470   if (g_isnan(x))
 471     return 0;
 472   if (x >= (jdouble) max_jlong)
 473     return max_jlong;
 474   if (x <= (jdouble) min_jlong)
 475     return min_jlong;
 476   return (jlong) x;
 477 JRT_END
 478 
 479 
 480 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 481   return (jfloat)x;
 482 JRT_END
 483 
 484 
 485 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 486   return (jfloat)x;
 487 JRT_END
 488 
 489 
 490 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 491   return (jdouble)x;
 492 JRT_END
 493 
 494 // Exception handling accross interpreter/compiler boundaries
 495 //
 496 // exception_handler_for_return_address(...) returns the continuation address.
 497 // The continuation address is the entry point of the exception handler of the
 498 // previous frame depending on the return address.
 499 
 500 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 501   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 502 
 503   // Reset method handle flag.
 504   thread->set_is_method_handle_return(false);
 505 
 506   // The fastest case first
 507   CodeBlob* blob = CodeCache::find_blob(return_address);
 508   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 509   if (nm != NULL) {
 510     // Set flag if return address is a method handle call site.
 511     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 512     // native nmethods don't have exception handlers
 513     assert(!nm->is_native_method(), "no exception handler");
 514     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 515     if (nm->is_deopt_pc(return_address)) {
 516       return SharedRuntime::deopt_blob()->unpack_with_exception();
 517     } else {
 518       return nm->exception_begin();
 519     }
 520   }
 521 
 522   // Entry code
 523   if (StubRoutines::returns_to_call_stub(return_address)) {
 524     return StubRoutines::catch_exception_entry();
 525   }
 526   // Interpreted code
 527   if (Interpreter::contains(return_address)) {
 528     return Interpreter::rethrow_exception_entry();
 529   }
 530   // Ricochet frame unwind code
 531   if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) {
 532     return SharedRuntime::ricochet_blob()->exception_addr();
 533   }
 534 
 535   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 536   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 537 
 538 #ifndef PRODUCT
 539   { ResourceMark rm;
 540     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 541     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 542     tty->print_cr("b) other problem");
 543   }
 544 #endif // PRODUCT
 545 
 546   ShouldNotReachHere();
 547   return NULL;
 548 }
 549 
 550 
 551 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 552   return raw_exception_handler_for_return_address(thread, return_address);
 553 JRT_END
 554 
 555 
 556 address SharedRuntime::get_poll_stub(address pc) {
 557   address stub;
 558   // Look up the code blob
 559   CodeBlob *cb = CodeCache::find_blob(pc);
 560 
 561   // Should be an nmethod
 562   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 563 
 564   // Look up the relocation information
 565   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 566     "safepoint polling: type must be poll" );
 567 
 568   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 569     "Only polling locations are used for safepoint");
 570 
 571   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 572   if (at_poll_return) {
 573     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 574            "polling page return stub not created yet");
 575     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 576   } else {
 577     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 578            "polling page safepoint stub not created yet");
 579     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 580   }
 581 #ifndef PRODUCT
 582   if( TraceSafepoint ) {
 583     char buf[256];
 584     jio_snprintf(buf, sizeof(buf),
 585                  "... found polling page %s exception at pc = "
 586                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 587                  at_poll_return ? "return" : "loop",
 588                  (intptr_t)pc, (intptr_t)stub);
 589     tty->print_raw_cr(buf);
 590   }
 591 #endif // PRODUCT
 592   return stub;
 593 }
 594 
 595 
 596 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 597   assert(caller.is_interpreted_frame(), "");
 598   int args_size = ArgumentSizeComputer(sig).size() + 1;
 599   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 600   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 601   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 602   return result;
 603 }
 604 
 605 
 606 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 607   if (JvmtiExport::can_post_on_exceptions()) {
 608     vframeStream vfst(thread, true);
 609     methodHandle method = methodHandle(thread, vfst.method());
 610     address bcp = method()->bcp_from(vfst.bci());
 611     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 612   }
 613   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 614 }
 615 
 616 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 617   Handle h_exception = Exceptions::new_exception(thread, name, message);
 618   throw_and_post_jvmti_exception(thread, h_exception);
 619 }
 620 
 621 // The interpreter code to call this tracing function is only
 622 // called/generated when TraceRedefineClasses has the right bits
 623 // set. Since obsolete methods are never compiled, we don't have
 624 // to modify the compilers to generate calls to this function.
 625 //
 626 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 627     JavaThread* thread, methodOopDesc* method))
 628   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 629 
 630   if (method->is_obsolete()) {
 631     // We are calling an obsolete method, but this is not necessarily
 632     // an error. Our method could have been redefined just after we
 633     // fetched the methodOop from the constant pool.
 634 
 635     // RC_TRACE macro has an embedded ResourceMark
 636     RC_TRACE_WITH_THREAD(0x00001000, thread,
 637                          ("calling obsolete method '%s'",
 638                           method->name_and_sig_as_C_string()));
 639     if (RC_TRACE_ENABLED(0x00002000)) {
 640       // this option is provided to debug calls to obsolete methods
 641       guarantee(false, "faulting at call to an obsolete method.");
 642     }
 643   }
 644   return 0;
 645 JRT_END
 646 
 647 // ret_pc points into caller; we are returning caller's exception handler
 648 // for given exception
 649 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 650                                                     bool force_unwind, bool top_frame_only) {
 651   assert(nm != NULL, "must exist");
 652   ResourceMark rm;
 653 
 654   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 655   // determine handler bci, if any
 656   EXCEPTION_MARK;
 657 
 658   int handler_bci = -1;
 659   int scope_depth = 0;
 660   if (!force_unwind) {
 661     int bci = sd->bci();

 662     do {
 663       bool skip_scope_increment = false;
 664       // exception handler lookup
 665       KlassHandle ek (THREAD, exception->klass());
 666       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
 667       if (HAS_PENDING_EXCEPTION) {

 668         // We threw an exception while trying to find the exception handler.
 669         // Transfer the new exception to the exception handle which will
 670         // be set into thread local storage, and do another lookup for an
 671         // exception handler for this exception, this time starting at the
 672         // BCI of the exception handler which caused the exception to be
 673         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 674         // argument to ensure that the correct exception is thrown (4870175).
 675         exception = Handle(THREAD, PENDING_EXCEPTION);
 676         CLEAR_PENDING_EXCEPTION;
 677         if (handler_bci >= 0) {
 678           bci = handler_bci;
 679           handler_bci = -1;
 680           skip_scope_increment = true;
 681         }
 682       }



 683       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 684         sd = sd->sender();
 685         if (sd != NULL) {
 686           bci = sd->bci();
 687         }
 688         ++scope_depth;
 689       }
 690     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
 691   }
 692 
 693   // found handling method => lookup exception handler
 694   int catch_pco = ret_pc - nm->code_begin();
 695 
 696   ExceptionHandlerTable table(nm);
 697   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 698   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 699     // Allow abbreviated catch tables.  The idea is to allow a method
 700     // to materialize its exceptions without committing to the exact
 701     // routing of exceptions.  In particular this is needed for adding
 702     // a synthethic handler to unlock monitors when inlining
 703     // synchonized methods since the unlock path isn't represented in
 704     // the bytecodes.
 705     t = table.entry_for(catch_pco, -1, 0);
 706   }
 707 
 708 #ifdef COMPILER1
 709   if (t == NULL && nm->is_compiled_by_c1()) {
 710     assert(nm->unwind_handler_begin() != NULL, "");
 711     return nm->unwind_handler_begin();
 712   }
 713 #endif
 714 
 715   if (t == NULL) {
 716     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 717     tty->print_cr("   Exception:");
 718     exception->print();
 719     tty->cr();
 720     tty->print_cr(" Compiled exception table :");
 721     table.print();
 722     nm->print_code();
 723     guarantee(false, "missing exception handler");
 724     return NULL;
 725   }
 726 
 727   return nm->code_begin() + t->pco();
 728 }
 729 
 730 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 731   // These errors occur only at call sites
 732   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 733 JRT_END
 734 
 735 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 736   // These errors occur only at call sites
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 741   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 742 JRT_END
 743 
 744 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 745   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 746 JRT_END
 747 
 748 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 749   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 750   // cache sites (when the callee activation is not yet set up) so we are at a call site
 751   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 752 JRT_END
 753 
 754 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 755   // We avoid using the normal exception construction in this case because
 756   // it performs an upcall to Java, and we're already out of stack space.
 757   klassOop k = SystemDictionary::StackOverflowError_klass();
 758   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 759   Handle exception (thread, exception_oop);
 760   if (StackTraceInThrowable) {
 761     java_lang_Throwable::fill_in_stack_trace(exception);
 762   }
 763   throw_and_post_jvmti_exception(thread, exception);
 764 JRT_END
 765 
 766 JRT_ENTRY(void, SharedRuntime::throw_WrongMethodTypeException(JavaThread* thread, oopDesc* required, oopDesc* actual))
 767   assert(thread == JavaThread::current() && required->is_oop() && actual->is_oop(), "bad args");
 768   ResourceMark rm;
 769   char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual);
 770   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_invoke_WrongMethodTypeException(), message);
 771 JRT_END
 772 
 773 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 774                                                            address pc,
 775                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 776 {
 777   address target_pc = NULL;
 778 
 779   if (Interpreter::contains(pc)) {
 780 #ifdef CC_INTERP
 781     // C++ interpreter doesn't throw implicit exceptions
 782     ShouldNotReachHere();
 783 #else
 784     switch (exception_kind) {
 785       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 786       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 787       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 788       default:                      ShouldNotReachHere();
 789     }
 790 #endif // !CC_INTERP
 791   } else {
 792     switch (exception_kind) {
 793       case STACK_OVERFLOW: {
 794         // Stack overflow only occurs upon frame setup; the callee is
 795         // going to be unwound. Dispatch to a shared runtime stub
 796         // which will cause the StackOverflowError to be fabricated
 797         // and processed.
 798         // For stack overflow in deoptimization blob, cleanup thread.
 799         if (thread->deopt_mark() != NULL) {
 800           Deoptimization::cleanup_deopt_info(thread, NULL);
 801         }
 802         return StubRoutines::throw_StackOverflowError_entry();
 803       }
 804 
 805       case IMPLICIT_NULL: {
 806         if (VtableStubs::contains(pc)) {
 807           // We haven't yet entered the callee frame. Fabricate an
 808           // exception and begin dispatching it in the caller. Since
 809           // the caller was at a call site, it's safe to destroy all
 810           // caller-saved registers, as these entry points do.
 811           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 812 
 813           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 814           if (vt_stub == NULL) return NULL;
 815 
 816           if (vt_stub->is_abstract_method_error(pc)) {
 817             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 818             return StubRoutines::throw_AbstractMethodError_entry();
 819           } else {
 820             return StubRoutines::throw_NullPointerException_at_call_entry();
 821           }
 822         } else {
 823           CodeBlob* cb = CodeCache::find_blob(pc);
 824 
 825           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 826           if (cb == NULL) return NULL;
 827 
 828           // Exception happened in CodeCache. Must be either:
 829           // 1. Inline-cache check in C2I handler blob,
 830           // 2. Inline-cache check in nmethod, or
 831           // 3. Implict null exception in nmethod
 832 
 833           if (!cb->is_nmethod()) {
 834             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
 835                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 836             // There is no handler here, so we will simply unwind.
 837             return StubRoutines::throw_NullPointerException_at_call_entry();
 838           }
 839 
 840           // Otherwise, it's an nmethod.  Consult its exception handlers.
 841           nmethod* nm = (nmethod*)cb;
 842           if (nm->inlinecache_check_contains(pc)) {
 843             // exception happened inside inline-cache check code
 844             // => the nmethod is not yet active (i.e., the frame
 845             // is not set up yet) => use return address pushed by
 846             // caller => don't push another return address
 847             return StubRoutines::throw_NullPointerException_at_call_entry();
 848           }
 849 
 850 #ifndef PRODUCT
 851           _implicit_null_throws++;
 852 #endif
 853           target_pc = nm->continuation_for_implicit_exception(pc);
 854           // If there's an unexpected fault, target_pc might be NULL,
 855           // in which case we want to fall through into the normal
 856           // error handling code.
 857         }
 858 
 859         break; // fall through
 860       }
 861 
 862 
 863       case IMPLICIT_DIVIDE_BY_ZERO: {
 864         nmethod* nm = CodeCache::find_nmethod(pc);
 865         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 866 #ifndef PRODUCT
 867         _implicit_div0_throws++;
 868 #endif
 869         target_pc = nm->continuation_for_implicit_exception(pc);
 870         // If there's an unexpected fault, target_pc might be NULL,
 871         // in which case we want to fall through into the normal
 872         // error handling code.
 873         break; // fall through
 874       }
 875 
 876       default: ShouldNotReachHere();
 877     }
 878 
 879     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 880 
 881     // for AbortVMOnException flag
 882     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 883     if (exception_kind == IMPLICIT_NULL) {
 884       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 885     } else {
 886       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 887     }
 888     return target_pc;
 889   }
 890 
 891   ShouldNotReachHere();
 892   return NULL;
 893 }
 894 
 895 
 896 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 897 {
 898   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 899 }
 900 JNI_END
 901 
 902 
 903 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 904   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 905 }
 906 
 907 
 908 #ifndef PRODUCT
 909 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 910   const frame f = thread->last_frame();
 911   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 912 #ifndef PRODUCT
 913   methodHandle mh(THREAD, f.interpreter_frame_method());
 914   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 915 #endif // !PRODUCT
 916   return preserve_this_value;
 917 JRT_END
 918 #endif // !PRODUCT
 919 
 920 
 921 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 922   os::yield_all(attempts);
 923 JRT_END
 924 
 925 
 926 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 927   assert(obj->is_oop(), "must be a valid oop");
 928   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 929   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 930 JRT_END
 931 
 932 
 933 jlong SharedRuntime::get_java_tid(Thread* thread) {
 934   if (thread != NULL) {
 935     if (thread->is_Java_thread()) {
 936       oop obj = ((JavaThread*)thread)->threadObj();
 937       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 938     }
 939   }
 940   return 0;
 941 }
 942 
 943 /**
 944  * This function ought to be a void function, but cannot be because
 945  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 946  * 6254741.  Once that is fixed we can remove the dummy return value.
 947  */
 948 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 949   return dtrace_object_alloc_base(Thread::current(), o);
 950 }
 951 
 952 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 953   assert(DTraceAllocProbes, "wrong call");
 954   Klass* klass = o->blueprint();
 955   int size = o->size();
 956   Symbol* name = klass->name();
 957   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 958                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 959   return 0;
 960 }
 961 
 962 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 963     JavaThread* thread, methodOopDesc* method))
 964   assert(DTraceMethodProbes, "wrong call");
 965   Symbol* kname = method->klass_name();
 966   Symbol* name = method->name();
 967   Symbol* sig = method->signature();
 968   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 969       kname->bytes(), kname->utf8_length(),
 970       name->bytes(), name->utf8_length(),
 971       sig->bytes(), sig->utf8_length());
 972   return 0;
 973 JRT_END
 974 
 975 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 976     JavaThread* thread, methodOopDesc* method))
 977   assert(DTraceMethodProbes, "wrong call");
 978   Symbol* kname = method->klass_name();
 979   Symbol* name = method->name();
 980   Symbol* sig = method->signature();
 981   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
 982       kname->bytes(), kname->utf8_length(),
 983       name->bytes(), name->utf8_length(),
 984       sig->bytes(), sig->utf8_length());
 985   return 0;
 986 JRT_END
 987 
 988 
 989 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 990 // for a call current in progress, i.e., arguments has been pushed on stack
 991 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 992 // vtable updates, etc.  Caller frame must be compiled.
 993 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 994   ResourceMark rm(THREAD);
 995 
 996   // last java frame on stack (which includes native call frames)
 997   vframeStream vfst(thread, true);  // Do not skip and javaCalls
 998 
 999   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1000 }
1001 
1002 
1003 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1004 // for a call current in progress, i.e., arguments has been pushed on stack
1005 // but callee has not been invoked yet.  Caller frame must be compiled.
1006 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1007                                               vframeStream& vfst,
1008                                               Bytecodes::Code& bc,
1009                                               CallInfo& callinfo, TRAPS) {
1010   Handle receiver;
1011   Handle nullHandle;  //create a handy null handle for exception returns
1012 
1013   assert(!vfst.at_end(), "Java frame must exist");
1014 
1015   // Find caller and bci from vframe
1016   methodHandle caller (THREAD, vfst.method());
1017   int          bci    = vfst.bci();
1018 
1019   // Find bytecode
1020   Bytecode_invoke bytecode(caller, bci);
1021   bc = bytecode.java_code();
1022   int bytecode_index = bytecode.index();
1023 
1024   // Find receiver for non-static call
1025   if (bc != Bytecodes::_invokestatic) {
1026     // This register map must be update since we need to find the receiver for
1027     // compiled frames. The receiver might be in a register.
1028     RegisterMap reg_map2(thread);
1029     frame stubFrame   = thread->last_frame();
1030     // Caller-frame is a compiled frame
1031     frame callerFrame = stubFrame.sender(&reg_map2);
1032 
1033     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1034     if (callee.is_null()) {
1035       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1036     }
1037     // Retrieve from a compiled argument list
1038     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1039 
1040     if (receiver.is_null()) {
1041       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1042     }
1043   }
1044 
1045   // Resolve method. This is parameterized by bytecode.
1046   constantPoolHandle constants (THREAD, caller->constants());
1047   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
1048   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1049 
1050 #ifdef ASSERT
1051   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1052   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
1053     assert(receiver.not_null(), "should have thrown exception");
1054     KlassHandle receiver_klass (THREAD, receiver->klass());
1055     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1056                             // klass is already loaded
1057     KlassHandle static_receiver_klass (THREAD, rk);
1058     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
1059     if (receiver_klass->oop_is_instance()) {
1060       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
1061         tty->print_cr("ERROR: Klass not yet initialized!!");
1062         receiver_klass.print();
1063       }
1064       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1065     }
1066   }
1067 #endif
1068 
1069   return receiver;
1070 }
1071 
1072 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1073   ResourceMark rm(THREAD);
1074   // We need first to check if any Java activations (compiled, interpreted)
1075   // exist on the stack since last JavaCall.  If not, we need
1076   // to get the target method from the JavaCall wrapper.
1077   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1078   methodHandle callee_method;
1079   if (vfst.at_end()) {
1080     // No Java frames were found on stack since we did the JavaCall.
1081     // Hence the stack can only contain an entry_frame.  We need to
1082     // find the target method from the stub frame.
1083     RegisterMap reg_map(thread, false);
1084     frame fr = thread->last_frame();
1085     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1086     fr = fr.sender(&reg_map);
1087     assert(fr.is_entry_frame(), "must be");
1088     // fr is now pointing to the entry frame.
1089     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1090     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1091   } else {
1092     Bytecodes::Code bc;
1093     CallInfo callinfo;
1094     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1095     callee_method = callinfo.selected_method();
1096   }
1097   assert(callee_method()->is_method(), "must be");
1098   return callee_method;
1099 }
1100 
1101 // Resolves a call.
1102 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1103                                            bool is_virtual,
1104                                            bool is_optimized, TRAPS) {
1105   methodHandle callee_method;
1106   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1107   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1108     int retry_count = 0;
1109     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1110            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1111       // If has a pending exception then there is no need to re-try to
1112       // resolve this method.
1113       // If the method has been redefined, we need to try again.
1114       // Hack: we have no way to update the vtables of arrays, so don't
1115       // require that java.lang.Object has been updated.
1116 
1117       // It is very unlikely that method is redefined more than 100 times
1118       // in the middle of resolve. If it is looping here more than 100 times
1119       // means then there could be a bug here.
1120       guarantee((retry_count++ < 100),
1121                 "Could not resolve to latest version of redefined method");
1122       // method is redefined in the middle of resolve so re-try.
1123       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1124     }
1125   }
1126   return callee_method;
1127 }
1128 
1129 // Resolves a call.  The compilers generate code for calls that go here
1130 // and are patched with the real destination of the call.
1131 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1132                                            bool is_virtual,
1133                                            bool is_optimized, TRAPS) {
1134 
1135   ResourceMark rm(thread);
1136   RegisterMap cbl_map(thread, false);
1137   frame caller_frame = thread->last_frame().sender(&cbl_map);
1138 
1139   CodeBlob* caller_cb = caller_frame.cb();
1140   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1141   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1142   // make sure caller is not getting deoptimized
1143   // and removed before we are done with it.
1144   // CLEANUP - with lazy deopt shouldn't need this lock
1145   nmethodLocker caller_lock(caller_nm);
1146 
1147 
1148   // determine call info & receiver
1149   // note: a) receiver is NULL for static calls
1150   //       b) an exception is thrown if receiver is NULL for non-static calls
1151   CallInfo call_info;
1152   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1153   Handle receiver = find_callee_info(thread, invoke_code,
1154                                      call_info, CHECK_(methodHandle()));
1155   methodHandle callee_method = call_info.selected_method();
1156 
1157   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
1158          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
1159 
1160 #ifndef PRODUCT
1161   // tracing/debugging/statistics
1162   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1163                 (is_virtual) ? (&_resolve_virtual_ctr) :
1164                                (&_resolve_static_ctr);
1165   Atomic::inc(addr);
1166 
1167   if (TraceCallFixup) {
1168     ResourceMark rm(thread);
1169     tty->print("resolving %s%s (%s) call to",
1170       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1171       Bytecodes::name(invoke_code));
1172     callee_method->print_short_name(tty);
1173     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1174   }
1175 #endif
1176 
1177   // JSR 292
1178   // If the resolved method is a MethodHandle invoke target the call
1179   // site must be a MethodHandle call site.
1180   if (callee_method->is_method_handle_invoke()) {
1181     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1182   }
1183 
1184   // Compute entry points. This might require generation of C2I converter
1185   // frames, so we cannot be holding any locks here. Furthermore, the
1186   // computation of the entry points is independent of patching the call.  We
1187   // always return the entry-point, but we only patch the stub if the call has
1188   // not been deoptimized.  Return values: For a virtual call this is an
1189   // (cached_oop, destination address) pair. For a static call/optimized
1190   // virtual this is just a destination address.
1191 
1192   StaticCallInfo static_call_info;
1193   CompiledICInfo virtual_call_info;
1194 
1195   // Make sure the callee nmethod does not get deoptimized and removed before
1196   // we are done patching the code.
1197   nmethod* callee_nm = callee_method->code();
1198   nmethodLocker nl_callee(callee_nm);
1199 #ifdef ASSERT
1200   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1201 #endif
1202 
1203   if (is_virtual) {
1204     assert(receiver.not_null(), "sanity check");
1205     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1206     KlassHandle h_klass(THREAD, receiver->klass());
1207     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1208                      is_optimized, static_bound, virtual_call_info,
1209                      CHECK_(methodHandle()));
1210   } else {
1211     // static call
1212     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1213   }
1214 
1215   // grab lock, check for deoptimization and potentially patch caller
1216   {
1217     MutexLocker ml_patch(CompiledIC_lock);
1218 
1219     // Now that we are ready to patch if the methodOop was redefined then
1220     // don't update call site and let the caller retry.
1221 
1222     if (!callee_method->is_old()) {
1223 #ifdef ASSERT
1224       // We must not try to patch to jump to an already unloaded method.
1225       if (dest_entry_point != 0) {
1226         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1227                "should not unload nmethod while locked");
1228       }
1229 #endif
1230       if (is_virtual) {
1231         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1232         if (inline_cache->is_clean()) {
1233           inline_cache->set_to_monomorphic(virtual_call_info);
1234         }
1235       } else {
1236         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1237         if (ssc->is_clean()) ssc->set(static_call_info);
1238       }
1239     }
1240 
1241   } // unlock CompiledIC_lock
1242 
1243   return callee_method;
1244 }
1245 
1246 
1247 // Inline caches exist only in compiled code
1248 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1249 #ifdef ASSERT
1250   RegisterMap reg_map(thread, false);
1251   frame stub_frame = thread->last_frame();
1252   assert(stub_frame.is_runtime_frame(), "sanity check");
1253   frame caller_frame = stub_frame.sender(&reg_map);
1254   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1255   assert(!caller_frame.is_ricochet_frame(), "unexpected frame");
1256 #endif /* ASSERT */
1257 
1258   methodHandle callee_method;
1259   JRT_BLOCK
1260     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1261     // Return methodOop through TLS
1262     thread->set_vm_result(callee_method());
1263   JRT_BLOCK_END
1264   // return compiled code entry point after potential safepoints
1265   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1266   return callee_method->verified_code_entry();
1267 JRT_END
1268 
1269 
1270 // Handle call site that has been made non-entrant
1271 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1272   // 6243940 We might end up in here if the callee is deoptimized
1273   // as we race to call it.  We don't want to take a safepoint if
1274   // the caller was interpreted because the caller frame will look
1275   // interpreted to the stack walkers and arguments are now
1276   // "compiled" so it is much better to make this transition
1277   // invisible to the stack walking code. The i2c path will
1278   // place the callee method in the callee_target. It is stashed
1279   // there because if we try and find the callee by normal means a
1280   // safepoint is possible and have trouble gc'ing the compiled args.
1281   RegisterMap reg_map(thread, false);
1282   frame stub_frame = thread->last_frame();
1283   assert(stub_frame.is_runtime_frame(), "sanity check");
1284   frame caller_frame = stub_frame.sender(&reg_map);
1285 
1286   // MethodHandle invokes don't have a CompiledIC and should always
1287   // simply redispatch to the callee_target.
1288   address   sender_pc = caller_frame.pc();
1289   CodeBlob* sender_cb = caller_frame.cb();
1290   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1291   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
1292   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1293     // If the callee_target is set, then we have come here via an i2c
1294     // adapter.
1295     methodOop callee = thread->callee_target();
1296     if (callee != NULL) {
1297       assert(callee->is_method(), "sanity");
1298       is_mh_invoke_via_adapter = true;
1299     }
1300   }
1301 
1302   if (caller_frame.is_interpreted_frame() ||
1303       caller_frame.is_entry_frame()       ||
1304       caller_frame.is_ricochet_frame()    ||
1305       is_mh_invoke_via_adapter) {
1306     methodOop callee = thread->callee_target();
1307     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1308     thread->set_vm_result(callee);
1309     thread->set_callee_target(NULL);
1310     return callee->get_c2i_entry();
1311   }
1312 
1313   // Must be compiled to compiled path which is safe to stackwalk
1314   methodHandle callee_method;
1315   JRT_BLOCK
1316     // Force resolving of caller (if we called from compiled frame)
1317     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1318     thread->set_vm_result(callee_method());
1319   JRT_BLOCK_END
1320   // return compiled code entry point after potential safepoints
1321   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1322   return callee_method->verified_code_entry();
1323 JRT_END
1324 
1325 
1326 // resolve a static call and patch code
1327 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1328   methodHandle callee_method;
1329   JRT_BLOCK
1330     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1331     thread->set_vm_result(callee_method());
1332   JRT_BLOCK_END
1333   // return compiled code entry point after potential safepoints
1334   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1335   return callee_method->verified_code_entry();
1336 JRT_END
1337 
1338 
1339 // resolve virtual call and update inline cache to monomorphic
1340 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1341   methodHandle callee_method;
1342   JRT_BLOCK
1343     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1344     thread->set_vm_result(callee_method());
1345   JRT_BLOCK_END
1346   // return compiled code entry point after potential safepoints
1347   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1348   return callee_method->verified_code_entry();
1349 JRT_END
1350 
1351 
1352 // Resolve a virtual call that can be statically bound (e.g., always
1353 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1354 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1355   methodHandle callee_method;
1356   JRT_BLOCK
1357     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1358     thread->set_vm_result(callee_method());
1359   JRT_BLOCK_END
1360   // return compiled code entry point after potential safepoints
1361   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1362   return callee_method->verified_code_entry();
1363 JRT_END
1364 
1365 
1366 
1367 
1368 
1369 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1370   ResourceMark rm(thread);
1371   CallInfo call_info;
1372   Bytecodes::Code bc;
1373 
1374   // receiver is NULL for static calls. An exception is thrown for NULL
1375   // receivers for non-static calls
1376   Handle receiver = find_callee_info(thread, bc, call_info,
1377                                      CHECK_(methodHandle()));
1378   // Compiler1 can produce virtual call sites that can actually be statically bound
1379   // If we fell thru to below we would think that the site was going megamorphic
1380   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1381   // we'd try and do a vtable dispatch however methods that can be statically bound
1382   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1383   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1384   // plain ic_miss) and the site will be converted to an optimized virtual call site
1385   // never to miss again. I don't believe C2 will produce code like this but if it
1386   // did this would still be the correct thing to do for it too, hence no ifdef.
1387   //
1388   if (call_info.resolved_method()->can_be_statically_bound()) {
1389     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1390     if (TraceCallFixup) {
1391       RegisterMap reg_map(thread, false);
1392       frame caller_frame = thread->last_frame().sender(&reg_map);
1393       ResourceMark rm(thread);
1394       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1395       callee_method->print_short_name(tty);
1396       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1397       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1398     }
1399     return callee_method;
1400   }
1401 
1402   methodHandle callee_method = call_info.selected_method();
1403 
1404   bool should_be_mono = false;
1405 
1406 #ifndef PRODUCT
1407   Atomic::inc(&_ic_miss_ctr);
1408 
1409   // Statistics & Tracing
1410   if (TraceCallFixup) {
1411     ResourceMark rm(thread);
1412     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1413     callee_method->print_short_name(tty);
1414     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1415   }
1416 
1417   if (ICMissHistogram) {
1418     MutexLocker m(VMStatistic_lock);
1419     RegisterMap reg_map(thread, false);
1420     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1421     // produce statistics under the lock
1422     trace_ic_miss(f.pc());
1423   }
1424 #endif
1425 
1426   // install an event collector so that when a vtable stub is created the
1427   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1428   // event can't be posted when the stub is created as locks are held
1429   // - instead the event will be deferred until the event collector goes
1430   // out of scope.
1431   JvmtiDynamicCodeEventCollector event_collector;
1432 
1433   // Update inline cache to megamorphic. Skip update if caller has been
1434   // made non-entrant or we are called from interpreted.
1435   { MutexLocker ml_patch (CompiledIC_lock);
1436     RegisterMap reg_map(thread, false);
1437     frame caller_frame = thread->last_frame().sender(&reg_map);
1438     CodeBlob* cb = caller_frame.cb();
1439     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1440       // Not a non-entrant nmethod, so find inline_cache
1441       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1442       bool should_be_mono = false;
1443       if (inline_cache->is_optimized()) {
1444         if (TraceCallFixup) {
1445           ResourceMark rm(thread);
1446           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1447           callee_method->print_short_name(tty);
1448           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1449         }
1450         should_be_mono = true;
1451       } else {
1452         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1453         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1454 
1455           if (receiver()->klass() == ic_oop->holder_klass()) {
1456             // This isn't a real miss. We must have seen that compiled code
1457             // is now available and we want the call site converted to a
1458             // monomorphic compiled call site.
1459             // We can't assert for callee_method->code() != NULL because it
1460             // could have been deoptimized in the meantime
1461             if (TraceCallFixup) {
1462               ResourceMark rm(thread);
1463               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1464               callee_method->print_short_name(tty);
1465               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1466             }
1467             should_be_mono = true;
1468           }
1469         }
1470       }
1471 
1472       if (should_be_mono) {
1473 
1474         // We have a path that was monomorphic but was going interpreted
1475         // and now we have (or had) a compiled entry. We correct the IC
1476         // by using a new icBuffer.
1477         CompiledICInfo info;
1478         KlassHandle receiver_klass(THREAD, receiver()->klass());
1479         inline_cache->compute_monomorphic_entry(callee_method,
1480                                                 receiver_klass,
1481                                                 inline_cache->is_optimized(),
1482                                                 false,
1483                                                 info, CHECK_(methodHandle()));
1484         inline_cache->set_to_monomorphic(info);
1485       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1486         // Change to megamorphic
1487         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1488       } else {
1489         // Either clean or megamorphic
1490       }
1491     }
1492   } // Release CompiledIC_lock
1493 
1494   return callee_method;
1495 }
1496 
1497 //
1498 // Resets a call-site in compiled code so it will get resolved again.
1499 // This routines handles both virtual call sites, optimized virtual call
1500 // sites, and static call sites. Typically used to change a call sites
1501 // destination from compiled to interpreted.
1502 //
1503 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1504   ResourceMark rm(thread);
1505   RegisterMap reg_map(thread, false);
1506   frame stub_frame = thread->last_frame();
1507   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1508   frame caller = stub_frame.sender(&reg_map);
1509 
1510   // Do nothing if the frame isn't a live compiled frame.
1511   // nmethod could be deoptimized by the time we get here
1512   // so no update to the caller is needed.
1513 
1514   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1515 
1516     address pc = caller.pc();
1517     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1518 
1519     // Default call_addr is the location of the "basic" call.
1520     // Determine the address of the call we a reresolving. With
1521     // Inline Caches we will always find a recognizable call.
1522     // With Inline Caches disabled we may or may not find a
1523     // recognizable call. We will always find a call for static
1524     // calls and for optimized virtual calls. For vanilla virtual
1525     // calls it depends on the state of the UseInlineCaches switch.
1526     //
1527     // With Inline Caches disabled we can get here for a virtual call
1528     // for two reasons:
1529     //   1 - calling an abstract method. The vtable for abstract methods
1530     //       will run us thru handle_wrong_method and we will eventually
1531     //       end up in the interpreter to throw the ame.
1532     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1533     //       call and between the time we fetch the entry address and
1534     //       we jump to it the target gets deoptimized. Similar to 1
1535     //       we will wind up in the interprter (thru a c2i with c2).
1536     //
1537     address call_addr = NULL;
1538     {
1539       // Get call instruction under lock because another thread may be
1540       // busy patching it.
1541       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1542       // Location of call instruction
1543       if (NativeCall::is_call_before(pc)) {
1544         NativeCall *ncall = nativeCall_before(pc);
1545         call_addr = ncall->instruction_address();
1546       }
1547     }
1548 
1549     // Check for static or virtual call
1550     bool is_static_call = false;
1551     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1552     // Make sure nmethod doesn't get deoptimized and removed until
1553     // this is done with it.
1554     // CLEANUP - with lazy deopt shouldn't need this lock
1555     nmethodLocker nmlock(caller_nm);
1556 
1557     if (call_addr != NULL) {
1558       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1559       int ret = iter.next(); // Get item
1560       if (ret) {
1561         assert(iter.addr() == call_addr, "must find call");
1562         if (iter.type() == relocInfo::static_call_type) {
1563           is_static_call = true;
1564         } else {
1565           assert(iter.type() == relocInfo::virtual_call_type ||
1566                  iter.type() == relocInfo::opt_virtual_call_type
1567                 , "unexpected relocInfo. type");
1568         }
1569       } else {
1570         assert(!UseInlineCaches, "relocation info. must exist for this address");
1571       }
1572 
1573       // Cleaning the inline cache will force a new resolve. This is more robust
1574       // than directly setting it to the new destination, since resolving of calls
1575       // is always done through the same code path. (experience shows that it
1576       // leads to very hard to track down bugs, if an inline cache gets updated
1577       // to a wrong method). It should not be performance critical, since the
1578       // resolve is only done once.
1579 
1580       MutexLocker ml(CompiledIC_lock);
1581       //
1582       // We do not patch the call site if the nmethod has been made non-entrant
1583       // as it is a waste of time
1584       //
1585       if (caller_nm->is_in_use()) {
1586         if (is_static_call) {
1587           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1588           ssc->set_to_clean();
1589         } else {
1590           // compiled, dispatched call (which used to call an interpreted method)
1591           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1592           inline_cache->set_to_clean();
1593         }
1594       }
1595     }
1596 
1597   }
1598 
1599   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1600 
1601 
1602 #ifndef PRODUCT
1603   Atomic::inc(&_wrong_method_ctr);
1604 
1605   if (TraceCallFixup) {
1606     ResourceMark rm(thread);
1607     tty->print("handle_wrong_method reresolving call to");
1608     callee_method->print_short_name(tty);
1609     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1610   }
1611 #endif
1612 
1613   return callee_method;
1614 }
1615 
1616 // ---------------------------------------------------------------------------
1617 // We are calling the interpreter via a c2i. Normally this would mean that
1618 // we were called by a compiled method. However we could have lost a race
1619 // where we went int -> i2c -> c2i and so the caller could in fact be
1620 // interpreted. If the caller is compiled we attempt to patch the caller
1621 // so he no longer calls into the interpreter.
1622 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1623   methodOop moop(method);
1624 
1625   address entry_point = moop->from_compiled_entry();
1626 
1627   // It's possible that deoptimization can occur at a call site which hasn't
1628   // been resolved yet, in which case this function will be called from
1629   // an nmethod that has been patched for deopt and we can ignore the
1630   // request for a fixup.
1631   // Also it is possible that we lost a race in that from_compiled_entry
1632   // is now back to the i2c in that case we don't need to patch and if
1633   // we did we'd leap into space because the callsite needs to use
1634   // "to interpreter" stub in order to load up the methodOop. Don't
1635   // ask me how I know this...
1636 
1637   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1638   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1639     return;
1640   }
1641 
1642   // The check above makes sure this is a nmethod.
1643   nmethod* nm = cb->as_nmethod_or_null();
1644   assert(nm, "must be");
1645 
1646   // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
1647   // to implement MethodHandle actions.
1648   if (nm->is_method_handle_return(caller_pc)) {
1649     return;
1650   }
1651 
1652   // There is a benign race here. We could be attempting to patch to a compiled
1653   // entry point at the same time the callee is being deoptimized. If that is
1654   // the case then entry_point may in fact point to a c2i and we'd patch the
1655   // call site with the same old data. clear_code will set code() to NULL
1656   // at the end of it. If we happen to see that NULL then we can skip trying
1657   // to patch. If we hit the window where the callee has a c2i in the
1658   // from_compiled_entry and the NULL isn't present yet then we lose the race
1659   // and patch the code with the same old data. Asi es la vida.
1660 
1661   if (moop->code() == NULL) return;
1662 
1663   if (nm->is_in_use()) {
1664 
1665     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1666     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1667     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1668       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1669       //
1670       // bug 6281185. We might get here after resolving a call site to a vanilla
1671       // virtual call. Because the resolvee uses the verified entry it may then
1672       // see compiled code and attempt to patch the site by calling us. This would
1673       // then incorrectly convert the call site to optimized and its downhill from
1674       // there. If you're lucky you'll get the assert in the bugid, if not you've
1675       // just made a call site that could be megamorphic into a monomorphic site
1676       // for the rest of its life! Just another racing bug in the life of
1677       // fixup_callers_callsite ...
1678       //
1679       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1680       iter.next();
1681       assert(iter.has_current(), "must have a reloc at java call site");
1682       relocInfo::relocType typ = iter.reloc()->type();
1683       if ( typ != relocInfo::static_call_type &&
1684            typ != relocInfo::opt_virtual_call_type &&
1685            typ != relocInfo::static_stub_type) {
1686         return;
1687       }
1688       address destination = call->destination();
1689       if (destination != entry_point) {
1690         CodeBlob* callee = CodeCache::find_blob(destination);
1691         // callee == cb seems weird. It means calling interpreter thru stub.
1692         if (callee == cb || callee->is_adapter_blob()) {
1693           // static call or optimized virtual
1694           if (TraceCallFixup) {
1695             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1696             moop->print_short_name(tty);
1697             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1698           }
1699           call->set_destination_mt_safe(entry_point);
1700         } else {
1701           if (TraceCallFixup) {
1702             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1703             moop->print_short_name(tty);
1704             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1705           }
1706           // assert is too strong could also be resolve destinations.
1707           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1708         }
1709       } else {
1710           if (TraceCallFixup) {
1711             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1712             moop->print_short_name(tty);
1713             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1714           }
1715       }
1716     }
1717   }
1718 
1719 IRT_END
1720 
1721 
1722 // same as JVM_Arraycopy, but called directly from compiled code
1723 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1724                                                 oopDesc* dest, jint dest_pos,
1725                                                 jint length,
1726                                                 JavaThread* thread)) {
1727 #ifndef PRODUCT
1728   _slow_array_copy_ctr++;
1729 #endif
1730   // Check if we have null pointers
1731   if (src == NULL || dest == NULL) {
1732     THROW(vmSymbols::java_lang_NullPointerException());
1733   }
1734   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1735   // even though the copy_array API also performs dynamic checks to ensure
1736   // that src and dest are truly arrays (and are conformable).
1737   // The copy_array mechanism is awkward and could be removed, but
1738   // the compilers don't call this function except as a last resort,
1739   // so it probably doesn't matter.
1740   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1741                                         (arrayOopDesc*)dest, dest_pos,
1742                                         length, thread);
1743 }
1744 JRT_END
1745 
1746 char* SharedRuntime::generate_class_cast_message(
1747     JavaThread* thread, const char* objName) {
1748 
1749   // Get target class name from the checkcast instruction
1750   vframeStream vfst(thread, true);
1751   assert(!vfst.at_end(), "Java frame must exist");
1752   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1753   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1754     cc.index(), thread));
1755   return generate_class_cast_message(objName, targetKlass->external_name());
1756 }
1757 
1758 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1759                                                         oopDesc* required,
1760                                                         oopDesc* actual) {
1761   if (TraceMethodHandles) {
1762     tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
1763                   thread, required, actual);
1764   }
1765   assert(EnableInvokeDynamic, "");
1766   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1767   char* message = NULL;
1768   if (singleKlass != NULL) {
1769     const char* objName = "argument or return value";
1770     if (actual != NULL) {
1771       // be flexible about the junk passed in:
1772       klassOop ak = (actual->is_klass()
1773                      ? (klassOop)actual
1774                      : actual->klass());
1775       objName = Klass::cast(ak)->external_name();
1776     }
1777     Klass* targetKlass = Klass::cast(required->is_klass()
1778                                      ? (klassOop)required
1779                                      : java_lang_Class::as_klassOop(required));
1780     message = generate_class_cast_message(objName, targetKlass->external_name());
1781   } else {
1782     // %%% need to get the MethodType string, without messing around too much
1783     const char* desc = NULL;
1784     // Get a signature from the invoke instruction
1785     const char* mhName = "method handle";
1786     const char* targetType = "the required signature";
1787     int targetArity = -1, mhArity = -1;
1788     vframeStream vfst(thread, true);
1789     if (!vfst.at_end()) {
1790       Bytecode_invoke call(vfst.method(), vfst.bci());
1791       methodHandle target;
1792       {
1793         EXCEPTION_MARK;
1794         target = call.static_target(THREAD);
1795         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1796       }
1797       if (target.not_null()
1798           && target->is_method_handle_invoke()
1799           && required == target->method_handle_type()) {
1800         targetType = target->signature()->as_C_string();
1801         targetArity = ArgumentCount(target->signature()).size();
1802       }
1803     }
1804     KlassHandle kignore; int dmf_flags = 0;
1805     methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
1806     if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
1807                        MethodHandles::_dmf_does_dispatch |
1808                        MethodHandles::_dmf_from_interface)) != 0)
1809       actual_method = methodHandle();  // MH does extra binds, drops, etc.
1810     bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
1811     if (actual_method.not_null()) {
1812       mhName = actual_method->signature()->as_C_string();
1813       mhArity = ArgumentCount(actual_method->signature()).size();
1814       if (!actual_method->is_static())  mhArity += 1;
1815     } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
1816       oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
1817       mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
1818       stringStream st;
1819       java_lang_invoke_MethodType::print_signature(mhType, &st);
1820       mhName = st.as_string();
1821     }
1822     if (targetArity != -1 && targetArity != mhArity) {
1823       if (has_receiver && targetArity == mhArity-1)
1824         desc = " cannot be called without a receiver argument as ";
1825       else
1826         desc = " cannot be called with a different arity as ";
1827     }
1828     message = generate_class_cast_message(mhName, targetType,
1829                                           desc != NULL ? desc :
1830                                           " cannot be called as ");
1831   }
1832   if (TraceMethodHandles) {
1833     tty->print_cr("WrongMethodType => message=%s", message);
1834   }
1835   return message;
1836 }
1837 
1838 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1839                                                             oopDesc* required) {
1840   if (required == NULL)  return NULL;
1841   if (required->klass() == SystemDictionary::Class_klass())
1842     return required;
1843   if (required->is_klass())
1844     return Klass::cast(klassOop(required))->java_mirror();
1845   return NULL;
1846 }
1847 
1848 
1849 char* SharedRuntime::generate_class_cast_message(
1850     const char* objName, const char* targetKlassName, const char* desc) {
1851   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1852 
1853   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1854   if (NULL == message) {
1855     // Shouldn't happen, but don't cause even more problems if it does
1856     message = const_cast<char*>(objName);
1857   } else {
1858     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1859   }
1860   return message;
1861 }
1862 
1863 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1864   (void) JavaThread::current()->reguard_stack();
1865 JRT_END
1866 
1867 
1868 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1869 #ifndef PRODUCT
1870 int SharedRuntime::_monitor_enter_ctr=0;
1871 #endif
1872 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1873   oop obj(_obj);
1874 #ifndef PRODUCT
1875   _monitor_enter_ctr++;             // monitor enter slow
1876 #endif
1877   if (PrintBiasedLockingStatistics) {
1878     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1879   }
1880   Handle h_obj(THREAD, obj);
1881   if (UseBiasedLocking) {
1882     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1883     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1884   } else {
1885     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1886   }
1887   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1888 JRT_END
1889 
1890 #ifndef PRODUCT
1891 int SharedRuntime::_monitor_exit_ctr=0;
1892 #endif
1893 // Handles the uncommon cases of monitor unlocking in compiled code
1894 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1895    oop obj(_obj);
1896 #ifndef PRODUCT
1897   _monitor_exit_ctr++;              // monitor exit slow
1898 #endif
1899   Thread* THREAD = JavaThread::current();
1900   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1901   // testing was unable to ever fire the assert that guarded it so I have removed it.
1902   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1903 #undef MIGHT_HAVE_PENDING
1904 #ifdef MIGHT_HAVE_PENDING
1905   // Save and restore any pending_exception around the exception mark.
1906   // While the slow_exit must not throw an exception, we could come into
1907   // this routine with one set.
1908   oop pending_excep = NULL;
1909   const char* pending_file;
1910   int pending_line;
1911   if (HAS_PENDING_EXCEPTION) {
1912     pending_excep = PENDING_EXCEPTION;
1913     pending_file  = THREAD->exception_file();
1914     pending_line  = THREAD->exception_line();
1915     CLEAR_PENDING_EXCEPTION;
1916   }
1917 #endif /* MIGHT_HAVE_PENDING */
1918 
1919   {
1920     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1921     EXCEPTION_MARK;
1922     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1923   }
1924 
1925 #ifdef MIGHT_HAVE_PENDING
1926   if (pending_excep != NULL) {
1927     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1928   }
1929 #endif /* MIGHT_HAVE_PENDING */
1930 JRT_END
1931 
1932 #ifndef PRODUCT
1933 
1934 void SharedRuntime::print_statistics() {
1935   ttyLocker ttyl;
1936   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1937 
1938   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1939   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1940   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1941 
1942   SharedRuntime::print_ic_miss_histogram();
1943 
1944   if (CountRemovableExceptions) {
1945     if (_nof_removable_exceptions > 0) {
1946       Unimplemented(); // this counter is not yet incremented
1947       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1948     }
1949   }
1950 
1951   // Dump the JRT_ENTRY counters
1952   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1953   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1954   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1955   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1956   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1957   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1958   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1959 
1960   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1961   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1962   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1963   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1964   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1965 
1966   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1967   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1968   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1969   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1970   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1971   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1972   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1973   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1974   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1975   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1976   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1977   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1978   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1979   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1980   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1981   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1982 
1983   AdapterHandlerLibrary::print_statistics();
1984 
1985   if (xtty != NULL)  xtty->tail("statistics");
1986 }
1987 
1988 inline double percent(int x, int y) {
1989   return 100.0 * x / MAX2(y, 1);
1990 }
1991 
1992 class MethodArityHistogram {
1993  public:
1994   enum { MAX_ARITY = 256 };
1995  private:
1996   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1997   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1998   static int _max_arity;                      // max. arity seen
1999   static int _max_size;                       // max. arg size seen
2000 
2001   static void add_method_to_histogram(nmethod* nm) {
2002     methodOop m = nm->method();
2003     ArgumentCount args(m->signature());
2004     int arity   = args.size() + (m->is_static() ? 0 : 1);
2005     int argsize = m->size_of_parameters();
2006     arity   = MIN2(arity, MAX_ARITY-1);
2007     argsize = MIN2(argsize, MAX_ARITY-1);
2008     int count = nm->method()->compiled_invocation_count();
2009     _arity_histogram[arity]  += count;
2010     _size_histogram[argsize] += count;
2011     _max_arity = MAX2(_max_arity, arity);
2012     _max_size  = MAX2(_max_size, argsize);
2013   }
2014 
2015   void print_histogram_helper(int n, int* histo, const char* name) {
2016     const int N = MIN2(5, n);
2017     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2018     double sum = 0;
2019     double weighted_sum = 0;
2020     int i;
2021     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2022     double rest = sum;
2023     double percent = sum / 100;
2024     for (i = 0; i <= N; i++) {
2025       rest -= histo[i];
2026       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2027     }
2028     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2029     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2030   }
2031 
2032   void print_histogram() {
2033     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2034     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2035     tty->print_cr("\nSame for parameter size (in words):");
2036     print_histogram_helper(_max_size, _size_histogram, "size");
2037     tty->cr();
2038   }
2039 
2040  public:
2041   MethodArityHistogram() {
2042     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2043     _max_arity = _max_size = 0;
2044     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2045     CodeCache::nmethods_do(add_method_to_histogram);
2046     print_histogram();
2047   }
2048 };
2049 
2050 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2051 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2052 int MethodArityHistogram::_max_arity;
2053 int MethodArityHistogram::_max_size;
2054 
2055 void SharedRuntime::print_call_statistics(int comp_total) {
2056   tty->print_cr("Calls from compiled code:");
2057   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2058   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2059   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2060   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2061   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2062   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2063   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2064   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2065   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2066   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2067   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2068   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2069   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2070   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2071   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2072   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2073   tty->cr();
2074   tty->print_cr("Note 1: counter updates are not MT-safe.");
2075   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2076   tty->print_cr("        %% in nested categories are relative to their category");
2077   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2078   tty->cr();
2079 
2080   MethodArityHistogram h;
2081 }
2082 #endif
2083 
2084 
2085 // A simple wrapper class around the calling convention information
2086 // that allows sharing of adapters for the same calling convention.
2087 class AdapterFingerPrint : public CHeapObj {
2088  private:
2089   union {
2090     int  _compact[3];
2091     int* _fingerprint;
2092   } _value;
2093   int _length; // A negative length indicates the fingerprint is in the compact form,
2094                // Otherwise _value._fingerprint is the array.
2095 
2096   // Remap BasicTypes that are handled equivalently by the adapters.
2097   // These are correct for the current system but someday it might be
2098   // necessary to make this mapping platform dependent.
2099   static BasicType adapter_encoding(BasicType in) {
2100     assert((~0xf & in) == 0, "must fit in 4 bits");
2101     switch(in) {
2102       case T_BOOLEAN:
2103       case T_BYTE:
2104       case T_SHORT:
2105       case T_CHAR:
2106         // There are all promoted to T_INT in the calling convention
2107         return T_INT;
2108 
2109       case T_OBJECT:
2110       case T_ARRAY:
2111 #ifdef _LP64
2112         return T_LONG;
2113 #else
2114         return T_INT;
2115 #endif
2116 
2117       case T_INT:
2118       case T_LONG:
2119       case T_FLOAT:
2120       case T_DOUBLE:
2121       case T_VOID:
2122         return in;
2123 
2124       default:
2125         ShouldNotReachHere();
2126         return T_CONFLICT;
2127     }
2128   }
2129 
2130  public:
2131   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2132     // The fingerprint is based on the BasicType signature encoded
2133     // into an array of ints with four entries per int.
2134     int* ptr;
2135     int len = (total_args_passed + 3) >> 2;
2136     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
2137       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2138       // Storing the signature encoded as signed chars hits about 98%
2139       // of the time.
2140       _length = -len;
2141       ptr = _value._compact;
2142     } else {
2143       _length = len;
2144       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
2145       ptr = _value._fingerprint;
2146     }
2147 
2148     // Now pack the BasicTypes with 4 per int
2149     int sig_index = 0;
2150     for (int index = 0; index < len; index++) {
2151       int value = 0;
2152       for (int byte = 0; byte < 4; byte++) {
2153         if (sig_index < total_args_passed) {
2154           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
2155         }
2156       }
2157       ptr[index] = value;
2158     }
2159   }
2160 
2161   ~AdapterFingerPrint() {
2162     if (_length > 0) {
2163       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2164     }
2165   }
2166 
2167   int value(int index) {
2168     if (_length < 0) {
2169       return _value._compact[index];
2170     }
2171     return _value._fingerprint[index];
2172   }
2173   int length() {
2174     if (_length < 0) return -_length;
2175     return _length;
2176   }
2177 
2178   bool is_compact() {
2179     return _length <= 0;
2180   }
2181 
2182   unsigned int compute_hash() {
2183     int hash = 0;
2184     for (int i = 0; i < length(); i++) {
2185       int v = value(i);
2186       hash = (hash << 8) ^ v ^ (hash >> 5);
2187     }
2188     return (unsigned int)hash;
2189   }
2190 
2191   const char* as_string() {
2192     stringStream st;
2193     for (int i = 0; i < length(); i++) {
2194       st.print(PTR_FORMAT, value(i));
2195     }
2196     return st.as_string();
2197   }
2198 
2199   bool equals(AdapterFingerPrint* other) {
2200     if (other->_length != _length) {
2201       return false;
2202     }
2203     if (_length < 0) {
2204       return _value._compact[0] == other->_value._compact[0] &&
2205              _value._compact[1] == other->_value._compact[1] &&
2206              _value._compact[2] == other->_value._compact[2];
2207     } else {
2208       for (int i = 0; i < _length; i++) {
2209         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2210           return false;
2211         }
2212       }
2213     }
2214     return true;
2215   }
2216 };
2217 
2218 
2219 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2220 class AdapterHandlerTable : public BasicHashtable {
2221   friend class AdapterHandlerTableIterator;
2222 
2223  private:
2224 
2225 #ifndef PRODUCT
2226   static int _lookups; // number of calls to lookup
2227   static int _buckets; // number of buckets checked
2228   static int _equals;  // number of buckets checked with matching hash
2229   static int _hits;    // number of successful lookups
2230   static int _compact; // number of equals calls with compact signature
2231 #endif
2232 
2233   AdapterHandlerEntry* bucket(int i) {
2234     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
2235   }
2236 
2237  public:
2238   AdapterHandlerTable()
2239     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
2240 
2241   // Create a new entry suitable for insertion in the table
2242   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2243     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
2244     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2245     return entry;
2246   }
2247 
2248   // Insert an entry into the table
2249   void add(AdapterHandlerEntry* entry) {
2250     int index = hash_to_index(entry->hash());
2251     add_entry(index, entry);
2252   }
2253 
2254   void free_entry(AdapterHandlerEntry* entry) {
2255     entry->deallocate();
2256     BasicHashtable::free_entry(entry);
2257   }
2258 
2259   // Find a entry with the same fingerprint if it exists
2260   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2261     NOT_PRODUCT(_lookups++);
2262     AdapterFingerPrint fp(total_args_passed, sig_bt);
2263     unsigned int hash = fp.compute_hash();
2264     int index = hash_to_index(hash);
2265     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2266       NOT_PRODUCT(_buckets++);
2267       if (e->hash() == hash) {
2268         NOT_PRODUCT(_equals++);
2269         if (fp.equals(e->fingerprint())) {
2270 #ifndef PRODUCT
2271           if (fp.is_compact()) _compact++;
2272           _hits++;
2273 #endif
2274           return e;
2275         }
2276       }
2277     }
2278     return NULL;
2279   }
2280 
2281 #ifndef PRODUCT
2282   void print_statistics() {
2283     ResourceMark rm;
2284     int longest = 0;
2285     int empty = 0;
2286     int total = 0;
2287     int nonempty = 0;
2288     for (int index = 0; index < table_size(); index++) {
2289       int count = 0;
2290       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2291         count++;
2292       }
2293       if (count != 0) nonempty++;
2294       if (count == 0) empty++;
2295       if (count > longest) longest = count;
2296       total += count;
2297     }
2298     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2299                   empty, longest, total, total / (double)nonempty);
2300     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2301                   _lookups, _buckets, _equals, _hits, _compact);
2302   }
2303 #endif
2304 };
2305 
2306 
2307 #ifndef PRODUCT
2308 
2309 int AdapterHandlerTable::_lookups;
2310 int AdapterHandlerTable::_buckets;
2311 int AdapterHandlerTable::_equals;
2312 int AdapterHandlerTable::_hits;
2313 int AdapterHandlerTable::_compact;
2314 
2315 #endif
2316 
2317 class AdapterHandlerTableIterator : public StackObj {
2318  private:
2319   AdapterHandlerTable* _table;
2320   int _index;
2321   AdapterHandlerEntry* _current;
2322 
2323   void scan() {
2324     while (_index < _table->table_size()) {
2325       AdapterHandlerEntry* a = _table->bucket(_index);
2326       _index++;
2327       if (a != NULL) {
2328         _current = a;
2329         return;
2330       }
2331     }
2332   }
2333 
2334  public:
2335   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2336     scan();
2337   }
2338   bool has_next() {
2339     return _current != NULL;
2340   }
2341   AdapterHandlerEntry* next() {
2342     if (_current != NULL) {
2343       AdapterHandlerEntry* result = _current;
2344       _current = _current->next();
2345       if (_current == NULL) scan();
2346       return result;
2347     } else {
2348       return NULL;
2349     }
2350   }
2351 };
2352 
2353 
2354 // ---------------------------------------------------------------------------
2355 // Implementation of AdapterHandlerLibrary
2356 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2357 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2358 const int AdapterHandlerLibrary_size = 16*K;
2359 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2360 
2361 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2362   // Should be called only when AdapterHandlerLibrary_lock is active.
2363   if (_buffer == NULL) // Initialize lazily
2364       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2365   return _buffer;
2366 }
2367 
2368 void AdapterHandlerLibrary::initialize() {
2369   if (_adapters != NULL) return;
2370   _adapters = new AdapterHandlerTable();
2371 
2372   // Create a special handler for abstract methods.  Abstract methods
2373   // are never compiled so an i2c entry is somewhat meaningless, but
2374   // fill it in with something appropriate just in case.  Pass handle
2375   // wrong method for the c2i transitions.
2376   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2377   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2378                                                               StubRoutines::throw_AbstractMethodError_entry(),
2379                                                               wrong_method, wrong_method);
2380 }
2381 
2382 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2383                                                       address i2c_entry,
2384                                                       address c2i_entry,
2385                                                       address c2i_unverified_entry) {
2386   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2387 }
2388 
2389 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2390   // Use customized signature handler.  Need to lock around updates to
2391   // the AdapterHandlerTable (it is not safe for concurrent readers
2392   // and a single writer: this could be fixed if it becomes a
2393   // problem).
2394 
2395   // Get the address of the ic_miss handlers before we grab the
2396   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2397   // was caused by the initialization of the stubs happening
2398   // while we held the lock and then notifying jvmti while
2399   // holding it. This just forces the initialization to be a little
2400   // earlier.
2401   address ic_miss = SharedRuntime::get_ic_miss_stub();
2402   assert(ic_miss != NULL, "must have handler");
2403 
2404   ResourceMark rm;
2405 
2406   NOT_PRODUCT(int insts_size);
2407   AdapterBlob* B = NULL;
2408   AdapterHandlerEntry* entry = NULL;
2409   AdapterFingerPrint* fingerprint = NULL;
2410   {
2411     MutexLocker mu(AdapterHandlerLibrary_lock);
2412     // make sure data structure is initialized
2413     initialize();
2414 
2415     if (method->is_abstract()) {
2416       return _abstract_method_handler;
2417     }
2418 
2419     // Fill in the signature array, for the calling-convention call.
2420     int total_args_passed = method->size_of_parameters(); // All args on stack
2421 
2422     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2423     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2424     int i = 0;
2425     if (!method->is_static())  // Pass in receiver first
2426       sig_bt[i++] = T_OBJECT;
2427     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2428       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2429       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2430         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2431     }
2432     assert(i == total_args_passed, "");
2433 
2434     // Lookup method signature's fingerprint
2435     entry = _adapters->lookup(total_args_passed, sig_bt);
2436 
2437 #ifdef ASSERT
2438     AdapterHandlerEntry* shared_entry = NULL;
2439     if (VerifyAdapterSharing && entry != NULL) {
2440       shared_entry = entry;
2441       entry = NULL;
2442     }
2443 #endif
2444 
2445     if (entry != NULL) {
2446       return entry;
2447     }
2448 
2449     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2450     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2451 
2452     // Make a C heap allocated version of the fingerprint to store in the adapter
2453     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2454 
2455     // Create I2C & C2I handlers
2456 
2457     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2458     if (buf != NULL) {
2459       CodeBuffer buffer(buf);
2460       short buffer_locs[20];
2461       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2462                                              sizeof(buffer_locs)/sizeof(relocInfo));
2463       MacroAssembler _masm(&buffer);
2464 
2465       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2466                                                      total_args_passed,
2467                                                      comp_args_on_stack,
2468                                                      sig_bt,
2469                                                      regs,
2470                                                      fingerprint);
2471 
2472 #ifdef ASSERT
2473       if (VerifyAdapterSharing) {
2474         if (shared_entry != NULL) {
2475           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2476                  "code must match");
2477           // Release the one just created and return the original
2478           _adapters->free_entry(entry);
2479           return shared_entry;
2480         } else  {
2481           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2482         }
2483       }
2484 #endif
2485 
2486       B = AdapterBlob::create(&buffer);
2487       NOT_PRODUCT(insts_size = buffer.insts_size());
2488     }
2489     if (B == NULL) {
2490       // CodeCache is full, disable compilation
2491       // Ought to log this but compile log is only per compile thread
2492       // and we're some non descript Java thread.
2493       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2494       CompileBroker::handle_full_code_cache();
2495       return NULL; // Out of CodeCache space
2496     }
2497     entry->relocate(B->content_begin());
2498 #ifndef PRODUCT
2499     // debugging suppport
2500     if (PrintAdapterHandlers) {
2501       tty->cr();
2502       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2503                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2504                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
2505       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2506       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
2507     }
2508 #endif
2509 
2510     _adapters->add(entry);
2511   }
2512   // Outside of the lock
2513   if (B != NULL) {
2514     char blob_id[256];
2515     jio_snprintf(blob_id,
2516                  sizeof(blob_id),
2517                  "%s(%s)@" PTR_FORMAT,
2518                  B->name(),
2519                  fingerprint->as_string(),
2520                  B->content_begin());
2521     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2522 
2523     if (JvmtiExport::should_post_dynamic_code_generated()) {
2524       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2525     }
2526   }
2527   return entry;
2528 }
2529 
2530 void AdapterHandlerEntry::relocate(address new_base) {
2531     ptrdiff_t delta = new_base - _i2c_entry;
2532     _i2c_entry += delta;
2533     _c2i_entry += delta;
2534     _c2i_unverified_entry += delta;
2535 }
2536 
2537 
2538 void AdapterHandlerEntry::deallocate() {
2539   delete _fingerprint;
2540 #ifdef ASSERT
2541   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2542   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2543 #endif
2544 }
2545 
2546 
2547 #ifdef ASSERT
2548 // Capture the code before relocation so that it can be compared
2549 // against other versions.  If the code is captured after relocation
2550 // then relative instructions won't be equivalent.
2551 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2552   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2553   _code_length = length;
2554   memcpy(_saved_code, buffer, length);
2555   _total_args_passed = total_args_passed;
2556   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2557   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2558 }
2559 
2560 
2561 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2562   if (length != _code_length) {
2563     return false;
2564   }
2565   for (int i = 0; i < length; i++) {
2566     if (buffer[i] != _saved_code[i]) {
2567       return false;
2568     }
2569   }
2570   return true;
2571 }
2572 #endif
2573 
2574 
2575 // Create a native wrapper for this native method.  The wrapper converts the
2576 // java compiled calling convention to the native convention, handlizes
2577 // arguments, and transitions to native.  On return from the native we transition
2578 // back to java blocking if a safepoint is in progress.
2579 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2580   ResourceMark rm;
2581   nmethod* nm = NULL;
2582 
2583   assert(method->has_native_function(), "must have something valid to call!");
2584 
2585   {
2586     // perform the work while holding the lock, but perform any printing outside the lock
2587     MutexLocker mu(AdapterHandlerLibrary_lock);
2588     // See if somebody beat us to it
2589     nm = method->code();
2590     if (nm) {
2591       return nm;
2592     }
2593 
2594     ResourceMark rm;
2595 
2596     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2597     if (buf != NULL) {
2598       CodeBuffer buffer(buf);
2599       double locs_buf[20];
2600       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2601       MacroAssembler _masm(&buffer);
2602 
2603       // Fill in the signature array, for the calling-convention call.
2604       int total_args_passed = method->size_of_parameters();
2605 
2606       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2607       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2608       int i=0;
2609       if( !method->is_static() )  // Pass in receiver first
2610         sig_bt[i++] = T_OBJECT;
2611       SignatureStream ss(method->signature());
2612       for( ; !ss.at_return_type(); ss.next()) {
2613         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2614         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2615           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2616       }
2617       assert( i==total_args_passed, "" );
2618       BasicType ret_type = ss.type();
2619 
2620       // Now get the compiled-Java layout as input arguments
2621       int comp_args_on_stack;
2622       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2623 
2624       // Generate the compiled-to-native wrapper code
2625       nm = SharedRuntime::generate_native_wrapper(&_masm,
2626                                                   method,
2627                                                   compile_id,
2628                                                   total_args_passed,
2629                                                   comp_args_on_stack,
2630                                                   sig_bt,regs,
2631                                                   ret_type);
2632     }
2633   }
2634 
2635   // Must unlock before calling set_code
2636 
2637   // Install the generated code.
2638   if (nm != NULL) {
2639     if (PrintCompilation) {
2640       ttyLocker ttyl;
2641       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2642     }
2643     method->set_code(method, nm);
2644     nm->post_compiled_method_load_event();
2645   } else {
2646     // CodeCache is full, disable compilation
2647     CompileBroker::handle_full_code_cache();
2648   }
2649   return nm;
2650 }
2651 
2652 #ifdef HAVE_DTRACE_H
2653 // Create a dtrace nmethod for this method.  The wrapper converts the
2654 // java compiled calling convention to the native convention, makes a dummy call
2655 // (actually nops for the size of the call instruction, which become a trap if
2656 // probe is enabled). The returns to the caller. Since this all looks like a
2657 // leaf no thread transition is needed.
2658 
2659 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2660   ResourceMark rm;
2661   nmethod* nm = NULL;
2662 
2663   if (PrintCompilation) {
2664     ttyLocker ttyl;
2665     tty->print("---   n%s  ");
2666     method->print_short_name(tty);
2667     if (method->is_static()) {
2668       tty->print(" (static)");
2669     }
2670     tty->cr();
2671   }
2672 
2673   {
2674     // perform the work while holding the lock, but perform any printing
2675     // outside the lock
2676     MutexLocker mu(AdapterHandlerLibrary_lock);
2677     // See if somebody beat us to it
2678     nm = method->code();
2679     if (nm) {
2680       return nm;
2681     }
2682 
2683     ResourceMark rm;
2684 
2685     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2686     if (buf != NULL) {
2687       CodeBuffer buffer(buf);
2688       // Need a few relocation entries
2689       double locs_buf[20];
2690       buffer.insts()->initialize_shared_locs(
2691         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2692       MacroAssembler _masm(&buffer);
2693 
2694       // Generate the compiled-to-native wrapper code
2695       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2696     }
2697   }
2698   return nm;
2699 }
2700 
2701 // the dtrace method needs to convert java lang string to utf8 string.
2702 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2703   typeArrayOop jlsValue  = java_lang_String::value(src);
2704   int          jlsOffset = java_lang_String::offset(src);
2705   int          jlsLen    = java_lang_String::length(src);
2706   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2707                                            jlsValue->char_at_addr(jlsOffset);
2708   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2709   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2710 }
2711 #endif // ndef HAVE_DTRACE_H
2712 
2713 // -------------------------------------------------------------------------
2714 // Java-Java calling convention
2715 // (what you use when Java calls Java)
2716 
2717 //------------------------------name_for_receiver----------------------------------
2718 // For a given signature, return the VMReg for parameter 0.
2719 VMReg SharedRuntime::name_for_receiver() {
2720   VMRegPair regs;
2721   BasicType sig_bt = T_OBJECT;
2722   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2723   // Return argument 0 register.  In the LP64 build pointers
2724   // take 2 registers, but the VM wants only the 'main' name.
2725   return regs.first();
2726 }
2727 
2728 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
2729   // This method is returning a data structure allocating as a
2730   // ResourceObject, so do not put any ResourceMarks in here.
2731   char *s = sig->as_C_string();
2732   int len = (int)strlen(s);
2733   *s++; len--;                  // Skip opening paren
2734   char *t = s+len;
2735   while( *(--t) != ')' ) ;      // Find close paren
2736 
2737   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2738   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2739   int cnt = 0;
2740   if (has_receiver) {
2741     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2742   }
2743 
2744   while( s < t ) {
2745     switch( *s++ ) {            // Switch on signature character
2746     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2747     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2748     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2749     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2750     case 'I': sig_bt[cnt++] = T_INT;     break;
2751     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2752     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2753     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2754     case 'V': sig_bt[cnt++] = T_VOID;    break;
2755     case 'L':                   // Oop
2756       while( *s++ != ';'  ) ;   // Skip signature
2757       sig_bt[cnt++] = T_OBJECT;
2758       break;
2759     case '[': {                 // Array
2760       do {                      // Skip optional size
2761         while( *s >= '0' && *s <= '9' ) s++;
2762       } while( *s++ == '[' );   // Nested arrays?
2763       // Skip element type
2764       if( s[-1] == 'L' )
2765         while( *s++ != ';'  ) ; // Skip signature
2766       sig_bt[cnt++] = T_ARRAY;
2767       break;
2768     }
2769     default : ShouldNotReachHere();
2770     }
2771   }
2772   assert( cnt < 256, "grow table size" );
2773 
2774   int comp_args_on_stack;
2775   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2776 
2777   // the calling convention doesn't count out_preserve_stack_slots so
2778   // we must add that in to get "true" stack offsets.
2779 
2780   if (comp_args_on_stack) {
2781     for (int i = 0; i < cnt; i++) {
2782       VMReg reg1 = regs[i].first();
2783       if( reg1->is_stack()) {
2784         // Yuck
2785         reg1 = reg1->bias(out_preserve_stack_slots());
2786       }
2787       VMReg reg2 = regs[i].second();
2788       if( reg2->is_stack()) {
2789         // Yuck
2790         reg2 = reg2->bias(out_preserve_stack_slots());
2791       }
2792       regs[i].set_pair(reg2, reg1);
2793     }
2794   }
2795 
2796   // results
2797   *arg_size = cnt;
2798   return regs;
2799 }
2800 
2801 // OSR Migration Code
2802 //
2803 // This code is used convert interpreter frames into compiled frames.  It is
2804 // called from very start of a compiled OSR nmethod.  A temp array is
2805 // allocated to hold the interesting bits of the interpreter frame.  All
2806 // active locks are inflated to allow them to move.  The displaced headers and
2807 // active interpeter locals are copied into the temp buffer.  Then we return
2808 // back to the compiled code.  The compiled code then pops the current
2809 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2810 // copies the interpreter locals and displaced headers where it wants.
2811 // Finally it calls back to free the temp buffer.
2812 //
2813 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2814 
2815 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2816 
2817 #ifdef IA64
2818   ShouldNotReachHere(); // NYI
2819 #endif /* IA64 */
2820 
2821   //
2822   // This code is dependent on the memory layout of the interpreter local
2823   // array and the monitors. On all of our platforms the layout is identical
2824   // so this code is shared. If some platform lays the their arrays out
2825   // differently then this code could move to platform specific code or
2826   // the code here could be modified to copy items one at a time using
2827   // frame accessor methods and be platform independent.
2828 
2829   frame fr = thread->last_frame();
2830   assert( fr.is_interpreted_frame(), "" );
2831   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2832 
2833   // Figure out how many monitors are active.
2834   int active_monitor_count = 0;
2835   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2836        kptr < fr.interpreter_frame_monitor_begin();
2837        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2838     if( kptr->obj() != NULL ) active_monitor_count++;
2839   }
2840 
2841   // QQQ we could place number of active monitors in the array so that compiled code
2842   // could double check it.
2843 
2844   methodOop moop = fr.interpreter_frame_method();
2845   int max_locals = moop->max_locals();
2846   // Allocate temp buffer, 1 word per local & 2 per active monitor
2847   int buf_size_words = max_locals + active_monitor_count*2;
2848   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2849 
2850   // Copy the locals.  Order is preserved so that loading of longs works.
2851   // Since there's no GC I can copy the oops blindly.
2852   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2853   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2854                        (HeapWord*)&buf[0],
2855                        max_locals);
2856 
2857   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2858   int i = max_locals;
2859   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2860        kptr2 < fr.interpreter_frame_monitor_begin();
2861        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2862     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2863       BasicLock *lock = kptr2->lock();
2864       // Inflate so the displaced header becomes position-independent
2865       if (lock->displaced_header()->is_unlocked())
2866         ObjectSynchronizer::inflate_helper(kptr2->obj());
2867       // Now the displaced header is free to move
2868       buf[i++] = (intptr_t)lock->displaced_header();
2869       buf[i++] = (intptr_t)kptr2->obj();
2870     }
2871   }
2872   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2873 
2874   return buf;
2875 JRT_END
2876 
2877 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2878   FREE_C_HEAP_ARRAY(intptr_t,buf);
2879 JRT_END
2880 
2881 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2882   AdapterHandlerTableIterator iter(_adapters);
2883   while (iter.has_next()) {
2884     AdapterHandlerEntry* a = iter.next();
2885     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2886   }
2887   return false;
2888 }
2889 
2890 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2891   AdapterHandlerTableIterator iter(_adapters);
2892   while (iter.has_next()) {
2893     AdapterHandlerEntry* a = iter.next();
2894     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2895       st->print("Adapter for signature: ");
2896       st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2897                    a->fingerprint()->as_string(),
2898                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2899 
2900       return;
2901     }
2902   }
2903   assert(false, "Should have found handler");
2904 }
2905 
2906 #ifndef PRODUCT
2907 
2908 void AdapterHandlerLibrary::print_statistics() {
2909   _adapters->print_statistics();
2910 }
2911 
2912 #endif /* PRODUCT */
--- EOF ---