
Scrolling on demand -
A scrollable toolbar component

Volker Simonis
WSI für Informatik, Universiẗat Tübingen, Germany

email: simonis@informatik.uni-tuebingen.de

May 8, 2004

Abstract

Modern GUI programs offer the possibility to easily access status informations and functionalities by means of
various menus, toolbars and information panels. However, as a program becomes more complex, or in the case where
users have the possibility to configure and extend these components, they often tend to get overfilled. This leads to
scrambled or even truncated components.

This article introduces a new container component calledScrollableBar, which can be used as a wrapper for any
Swing component. As long as there is enough place to layout the contained component,ScrollableBar is completely
transparent. As soon as the available space gets too small however,ScrollableBar will fade in two small arrow
buttons on the left and the right side (or on the top and the bottom side if in vertical mode), which can be used to scroll
the underlying component, thus avoiding the above mentioned problems.

ScrollableBar is a lightweight container derived fromJComponent which uses the standard Swing classesJView-
port andJButton to achieve its functionality. It fills a gap in the set of the standard Swing components and offers the
possibility to create more robust and intuitive user interfaces.

1 Introduction

Every professional applications comes with a fancy
graphical user interface today and with Swing, the stan-
dard widget set of Java, it is quite easy to create such ap-
plications. However, the design and implementation of
a robust and user friendly GUI is not a trivial task. One
common problem is the fact that the programmer has
no knowledge about the clients desktop size. This may
vary today from the standard notebook and flat panel
resolution of 1024x768 to 1900x1200 for high end dis-
plays. Even worse, Java applications can run on many
other devices like for example mobile phones, which
have an even more restricted resolution.

Another challenge arises from the extensibility of ap-
plications. While having the possibility to extend an
application with various plugins may be a nice feature
for the user, the fact that these plugins will populate the
menus and toolbars in an unpredictable way imposes
new problems on the programmer. Figure 1: Stylepad with scrollable menu, tool and status bars.

1

3 THE IMPLEMENTATION 2

One possibility to solve these problems is to limit
the size of the GUI components to a certain minimal
size. However, this may impose unnecessary restric-
tions on the user. (Think for example of somebody who
by default works with such an application, which needs
at least a resolution of 1024x768 but who occasionally
gives demo talks with a beamer which only supports
an 800x600 resolution.) Furthermore, if an application
with a graphical user interface pretends to be resizable
by displaying a resizable frame, than the user expects
he will be able to resize it based on his needs, not the
programmer ones.

The second possibility is to do nothing and wait what
happens. This is the way how most of the GUI appli-
cations are written today. Just compare figure 3 with
figure 4 and see how parts of the status- and toolbars
are cut of if the window is shrinked beyond its optimal
size. In the best case, the user could just reenlarge the
application if this happens. In the worst case, if she is
working on a device with a restricted resolution, it may
be impossible to access the desired functionality. In any
case such an application looks highly unprofessional!

2 Scrollable menus and toolbars!

The solution for all the above mentioned problems
would be scrollable menus and toolbars. However
Swing, as many other widget sets, does not offer such
kind of components. Using the standardJScrollPane
component as a container for menus and toolbars is
not an option here, becauseJScrollPane is too heavy
weight. Its scrollbars are simply too big. But there is
another Swing component which can serve us as a tem-
plate: since version 1.4, theJTabbedPane class offers the
possibility to scroll its panes instead of wrapping them
on several lines if they do not fit on a single line. As
can be seen in figure 2, arrow buttons for moving the
tabs have been added at the upper right part (for more
information see [6]).

Figure 2: Example of aJTabbedPane with the tab layout pol-
icy set toSCROLL TAB LAYOUT.

We now want to achieve the same behavior for menus,

toolbars and other status bars and information panels.
To get a visual impression of how the modified compo-
nents will look like compare the figures 3 and 1. They
both show a screen-shot of the Stylepad demo applica-
tion shipping with every JDK which has been extended
by a vertical toolbar and a useful status bar (see figure
4). While the menu, status bar and the toolbars are trun-
cated and partially inaccessible in figure 3, they can be
scrolled and are fully functional in figure 1 by using the
arrow buttons which have been faded in.

Figure 3: The Stylepad application from figure 4 with trun-
cated tool and status bars.

3 The implementation

I will now describe how to implement a class called
ScrollableBar, which can serve as a container for a
java.awt.Container object or any other object derived
from it. Most of the time,ScrollableBar objects are
completely transparent. Only if the place required by
the wrapped component for layout becomes too small,
theScrollableBar object will fade in two arrow buttons
at the left and right side of the component (or on the top
and the bottom side if in vertical mode) which can be
used to scroll the wrapped component. As soon as there
will be again enough place for the layout of the enclosed
component, these arrow buttons will disappear immedi-
ately.

3 THE IMPLEMENTATION 3

Figure 4: The Stylepad application at preferred size.

3.1 The Swing architecture

For a better understanding of theScrollableBar imple-
mentation, it is helpful to take a closer look at the ar-
chitecture of Swing. The Swing library is a modern
widget set based on the Model-View-Controller (MVC)
pattern [2]. But while the classical MVC pattern con-
sists of three independent parts, namely the model, the
view and the controller, Swing uses a simplified version
of this pattern where the view and the controller part
are combined in a so called Delegate [7, 1] (see figures
5 and 6).

As an example, figure 6 shows how this Model-
Delegate pattern applies to theJButton class. In Swing,
all visible components are descendants of theJCompo-
nent class. They usually capsule a component specific
model with a delegate object, which is a descendant of

Model

View Controller

Figure 5: The classical MVC pattern.

ComponentUI. These delegates are called user interface
(UI) classes in Swing. They are Look and Feel specific,
i.e. they are used to implement the different Look and

3 THE IMPLEMENTATION 4

Feel dependent properties of a component, but they can
also be used for other kinds of customization, like for
example localization [4].

Model

View Controller

DefaultButtonModel

MetalButtonUI

JButton

Delegate

Figure 6: The Model-Delegate pattern used in Swing.

One of the main responsibilities of the UI delegate is
to paint the component it is tied to. In contrast to the
AWT library, in Swing it is not thepaint() method of
every component which does the work of painting itself.
Instead, the component’spaint() method just calls the
paint() method of its delegate with a reference to itself.

3.2 TheScrollableBar class

Figure 7 shows the class diagram of theScrollableBar
class. As already mentioned, it is derived fromJCompo-
nent. It also implements theSwingConstants interface
in order to easily access the constantsHORIZONTAL and
VERTICAL which are defined there.

ScrollableBar has 4 properties. The two boolean
propertieshorizontal andsmall store the orientation of
the component and the size of the arrows on the scroll
buttons. The integer propertyinc stores the amount
of pixels by which the enclosed component will be
scrolled if one of the arrow buttons is being pressed.
Smaller values lead to a smoother but slower scrolling.
Finally, the wrapped component is stored in thecomp
property. Whilehorizontal is a read-only property
which can only be set in the constructor, the other three
properties are read/write bound properties in the sense
described in the Java Beans specification [3].

The following listing shows the two-argument con-
structor of theScrollableBar class:

Listing 1: ScrollableBar.java[Line 30 to 41]

public ScrollableBar(Component comp, int orientation) {

Listing 1: ScrollableBar.java[Line 30 to 41] (continued)

this.comp = comp;

if (orientation == HORIZONTAL) {

horizontal = true;

}

else {

horizontal = false;

}

small = true; // Arrow size on scroll button.

inc = 4; // Scroll width in pixels.

updateUI();

}

Notice the call toupdateUI() in the last line of the con-
structor. As can be seen in listing 2,updateUI() calls
the static methodgetUI() from the classUIManager to
query the right UI delegate and associates it with the
currentScrollableBar object.

Listing 2: ScrollableBar.java[Line 45 to 52]

public String getUIClassID() {

return "ScrollableBarUI";

}

public void updateUI() {

setUI(UIManager.getUI(this));

invalidate();

}

UIManager.getUI() callsgetUIClassID() (see listing 2)
to get the key which is used to query the actual UI del-
egate from a Look and Feel dependent internal table.
Usually, the association of the standard Swing compo-
nents to the appropriate UI classes is done by the differ-
ent Look and Feels while they are initialized. However,
as we are writing a new component, we have to establish
this link manually, as shown in the following listing:

Listing 3: ScrollableBar.java[Line 19 to 22]

static {

UIManager.put("ScrollableBarUI",

"com.languageExplorer.widgets.←↩

ScrollableBarUI");

}

Notice that linking a component to its UI delegate in
this way results in one and the same UI class being used
independently of the actual Look and Feel.

3 THE IMPLEMENTATION 5

+ScrollableBar(in comp : Component)
+ScrollableBar(in comp : Component, in orientation : int)
+g etU I Clas s I D ()
+u pd ateU I ()
+g etComponent() : Component
+s etComponent(in comp : Component)
+g etI ncrement() : int
+s etI ncrement(in inc : int)
+is SmallA rrow s () : boolean
+s etSmallA rrow s (in s mall : boolean)
+is H oriz ontal() : boolean

- h oriz ontal : boolean
- s mall : boolean
- inc : int
- comp : Component

ScrollableBar

« interf ace»
j av ax . s w i n g . Sw i n g C on s t an t s j av ax . s w i n g . J C om p on en t

+createU I (in c : J Component) : ComponentU I
+ins tallU I (in c : J Component)
+u nins tallU I (in c : J Component)
+property Ch ang e(in e : P roperty Ch ang eE v ent)
+s tateCh ang ed (in e : Ch ang eE v ent)
+mou s eE x ited (in e : M ou s eE v ent)
+mou s eR eleas ed (in e : M ou s eE v ent)
+mou s eP res s ed (in e : M ou s eE v ent)
createBu tton() : J Bu tton

- s b : ScrollabeleBar
- s croll : J V iew port
- s crollF : J Bu tton
- s crollB : J Bu tton
- pres s ed : boolean
- inc : int

ScrollableBarU I

1 1

j av ax . s w i n g . p laf . C om p on en t U I

« interf ace»
j av ax . s w i n g . Sw i n g C on s t an t s

« interf ace»
j av a. aw t . ev en t . M ou s eL i s t en er

« interf ace»
j av a. bean s . P rop ert y C h an g eL i s t en er

« interf ace»
j av ax . s w i n g . ev en t . C h an g eL i s t en er

j av ax . s w i n g . J Bu t t on

j av ax . s w i n g . J V i ew p ort

2

1

j av a. aw t . C om p on en t
1

Figure 7: The UML class diagram ofScrollableBar andScrollableBarUI.

Besides the getter and setter methods for the corre-
sponding properties, there is no more functionality in
theScrollableBar class. All the painting and user inter-
action is handled by the UI delegateScrollableBarUI.

3.3 TheScrollableBarUI class

One of the most important methods of the UI classes is
installUI() which is called every time when a compo-
nent is being associated with its UI delegate. This gives
the UI delegate a chance to properly initialize itself and
the component it is responsible for.

Listing 4: ScrollableBarUI.java[Line 51 to 106]

public void installUI(JComponent c) {

sb = (ScrollableBar)c;

inc = sb.getIncrement();

boolean small = sb.isSmallArrows();

// Create the Buttons

int sbSize = ((Integer)(UIManager.get(←↩

"ScrollBar.width"))).intValue();

scrollB = createButton(sb.isHorizontal()?WEST:NORTH, ←↩

sbSize, small);

scrollB.setVisible(false);

scrollB.addMouseListener(this);

scrollF = createButton(sb.isHorizontal()?EAST:SOUTH, ←↩

Listing 4: ScrollableBarUI.java[Line 51 to 106] (continued)

sbSize, small);

scrollF.setVisible(false);

scrollF.addMouseListener(this);

int axis = sb.isHorizontal()?BoxLayout.X AXIS:←↩

BoxLayout.Y AXIS;

sb.setLayout(new BoxLayout(sb, axis));

scroll = new JViewport() {

... see source code ...

};

Component box = sb.getComponent();

scroll.setView(box);

sb.add(scrollB);

sb.add(scroll);

sb.add(scrollF);

// Install the change listeners

scroll.addChangeListener(this);

sb.addPropertyChangeListener(this);

}

In our case, the UI delegate queries and stores the com-
ponents properties along with a reference to the compo-
nent itself as private instance variables. Further on, it
creates two arrow buttons and an object of typeJView-
port which is used to wrap the scrollable component.

3 THE IMPLEMENTATION 6

Based on the orientation of the associatedScrollable-
Bar object, the newly created elements are then being
added to it by using a vertical or horizontal box lay-
out. Notice that the scroll buttons are initially set to be
invisible. Finally, the UI object registers itself as prop-
erty change listener on the associated component, as a
change listener on the viewport and as a mouse listener
on the arrow buttons.

The UI delegate gets informed about every size
change of theScrollableBar object and the wrapped
component, by a receiving aChangeEvent from the
viewport object. Depending on the new sizes, it can
change the visibility state of the arrow buttons and re-
layout the component. Property changes in theScrol-
lableBar object are signaled to the UI delegate by a
PropertyChangeEvent. Based on these events, it can up-
date the internally cached values of these properties.

Finally, the events resulting from the user interac-
tions on the scroll buttons are handled by the different
mouse listener methods. The UI delegate keeps a pri-
vate boolean instance variablepressed which is set to
true if a button was pressed and which is reset to false
as soon as the button is released or the mouse pointer
leaves the button. As can be seen in listing 5, pressing
one of the buttons also starts a new thread which scrolls
the underlying component byinc pixels in the corre-
sponding direction and than sleeps for a short amount
of time. These two actions are subsequently repeated in
the thread as long as the value of the instance variable
pressed is true, while the amount of sleeping time is
reduced in every iteration step. This results in a contin-
uously accelerating scrolling speed, as longer the user
keeps on pressing the arrow button.

Listing 5: ScrollableBarUI.java[Line 174to 238]

public void mousePressed(MouseEvent e) {

pressed = true;

final Object o = e.getSource();

Thread scroller = new Thread(new Runnable() {

public void run() {

int accl = 500;

while (pressed) {

Point p = scroll.getViewPosition();

... Compute new view position ...

scroll.setViewPosition(p);

try {

Thread.sleep(accl);

if (accl <= 10) accl = 10;

else accl /= 2;

Listing 5: ScrollableBarUI.java[Line 174to 238]
(continued)

} catch (InterruptedException ie) {}

}

}

});

scroller.start();

}

It should be noticed that we need no special paint
method for theScrollableBarUI class, because paint-
ing occurs naturally from the standard Swing button and
viewport components which we used.

After we have discussed the main parts of the im-
plementation, it should be evident why the advantages
of dividing the functionality of theScrollableBar class
into two classes outweigh the coding overhead. First
of all we cleanly separated the properties of the com-
ponent from the way how it is displayed and how it in-
teracts with the user. Secondly, it is very easy now to
define a new UI delegate which renders the component
in a different way or to just derive a new UI delegate
from the existing one which slightly adopts appearance
or user interaction properties to a specific look and feel.

4 Using theScrollableBar class

Using theScrollableBar class is very easy and straight
forward. In fact we can wrap every arbitrary Swing
component inside aScrollableBar object by passing it
as argument to the constructor when creating the ob-
ject. For the example application shown in figure 1 it
was only necessary to change a single line:

JToolBar toolbar = new JToolBar();

...

panel.add("North", toolbar);

from the original Stylepad application into:

JToolBar toolbar = new JToolBar();

...

panel.add("North", new ScrollableBar(toolbar));

in order to make the horizontal toolbar scrollable if the
space becomes too small to render it as a whole.

In general, theScrollableBar class is more recom-
mended for wide and not very high components in hor-
izontal mode and narrow and high components in verti-
cal mode. If used for other components the scroll but-
tons would get too big and take up too much space to
be really useful.

5 CONCLUSION 7

4.1 Menu bars inJFrame objects

As shown in the last section it is very easy to use the
ScrollableBar class in your own applications. Even up-
grading existing applications is not very hard. The only
problem which may arise is in the case where aScrol-
lableBar should be used as a wrapper for a menu bar
which will be added directly to aJFrame object. (No-
tice that in our example application, the menu bar has
been added to aJPanel object before the whole panel
has been added to theJFrame object.)

The problem arises becauseJFrame provides a spe-
cialized setJMenuBar() method for adding menu bars
and this method expects an argument of TypeJMenuBar.
At a first glance, we could just use one of the generic
add() methods defined inJFrame’s ancestor classes in-
stead. However, if we take a closer look, we will see
that the problem is a little bit more complex.

First of all, in the case ofJFrame, children are not be-
ing added to the component directly, but to the so called
“root pane”, which is a special child component of ev-
eryJFrame. However, we also can not add the menu bar
directly to the root pane, because the root pane itself
also has a special method calledsetJMenuBar() which
expects aJMenuBar object as argument. Using this
method for adding menu bars is essential, because only
if it is used theRootLayout layout manager used by the
JRootPane class will honor the presence of the menu bar.
RootLayout, which is a protected inner class ofJRoot-
Pane, uses the protectedJRootPane property menuBar
which has been set byJRootPane.setJMenuBar() for
layout calculations.

To cut a long story short, we have to create a
newSMJFrame class (which stands for Scrollable Menu
JFrame) which overrides thecreateRootPane() method
to return a new, customized root pane class. For this
purpose we just derive an anonymous class fromJRoot-
Pane which overrides the two methodssetJMenuBar()
andcreateRootLayout().

setJMenuBar(), the first one of this two methods
wraps the menu bar into ourScrollableBar class, before
storing it as a protected instance variable and adding it
to the layered pane which is a part of the root pane.

The second methodcreateRootLayout() returns an
anonymous class which inherits from theJRootPane
protected inner classRootLayout. It overrides the lay-
out methods in that class in such a way, that they use
theScrollableBar instance variable for layout calcula-
tions instead of using the bare menu bar, as it was done
by the original version of the methods.

These modifications finally give the desired result. A
call to setJMenuBar() on aSMJFrame object will be for-
warded to the customized root pane. There, the menu
bar will be wrapped into aScrollabelBar object before
it will be actually added to the frame. Because the cus-
tomized root pane uses a customized layout manager,
it will handle the scrollable menu bar in the same way
in which aJFrame object handles an ordinary menu bar.
With respect to all other concerns,SMJFrame behaves ex-
actly like its ancestorJFrame.

4.2 Limitations

The only limitation for the use of theScrollableBar
class so far is that it can not handle floating tool bars.
This is becauseJToolBar objects have to be laid out into
a container whose layout manager is of typeBorderLay-
out if they want to be floatable. Additionally, no other
children can be added to any of the other four ”sides”.
This is obviously not the case, if the toolbar is wrapped
inside aScrollableBar object.

Fixing this problem would require extensive changes
in BasicToolBarUI, the UI delegate ofJToolBar. Unfor-
tunately, because not all the methods which need to be
customized are declared public or protected, in fact a
complete rewrite of the delegate would be necessary.

5 Conclusion

This paper presented a quite small and simple, yet very
powerful container class which fills a gap in the set of
standard Swing components. Using it involves no over-
head, neither at development time nor at run time but
yields a lot of benefits. The most important ones are:
better usability and user friendliness and more robust
and intuitive GUI applications.

The source code presented in this paper is available
from http://www.progdoc.org/ScrollableBar.jar.

6 Colophon

This paper has been typeset withPDFLATEX using the
twocolumn mode. The screen shots have been pre-
pared with XV and Ghostscript. The figures have been
painted with XFig while the UML class diagrams have
been done with Visio. The source code presented in this
paper has been included and highlighted with the pro-
gram documentation systemProgDOC[5].

http://www.progdoc.org/ScrollableBar.jar

REFERENCES 8

References

[1] R. Eckstein, M. Loy and D. Wood“Java Swing”,
O’Reilly, 1998

[2] E. Gamma, R.Helm, R. Johnson and J. Vlissides
“Design Patterns: Elements of Reusable Object-
Oriented Software”, Reading, MA, Addison-
Wesley, 1995

[3] Graham Hamilton (Ed.)JavaBeansSun Microsys-
tems, Version 1.01-A, August 1997 available at:
http://java.sun.com/beans

[4] Volker Simonis International Swinging: Making
Swing Components Locale-SensitiveC/C++ Users
Journal, Java Supplement, August 2002 available
at: http://www.cuj.com/java/jsup2008/

[5] Volker SimonisProgDOC - The Program Docu-
mentation Systemavailable at:http://www.progdoc.
org

[6] John Zukowski“Magic with Merlin: Scrolling
tabbed panes”, available at: http://www-106.ibm.
com/developerworks/java/library/j-mer0905/

[7] John Zukowski and Scott Stanchfield“Funda-
mentals of JFC/Swing, Part II”, MageLang In-
stitute, available at:http://developer.java.sun.com/
developer/onlineTraining/GUI/Swing2

http://java.sun.com/beans
http://www.cuj.com/java/jsup2008/
http://www.progdoc.org
http://www.progdoc.org
http://www-106.ibm.com/developerworks/java/library/j-mer0905/
http://www-106.ibm.com/developerworks/java/library/j-mer0905/
http://developer.java.sun.com/developer/onlineTraining/GUI/Swing2
http://developer.java.sun.com/developer/onlineTraining/GUI/Swing2

	Introduction
	Scrollable menus and toolbars!
	The implementation
	The Swing architecture
	The ScrollableBar class
	The ScrollableBarUI class

	Using the ScrollableBar class
	Menu bars in JFrame objects
	Limitations

	Conclusion
	Colophon

