Scrolling on demand -

A scrollable toolbar component

Volker Simonis
WSI fur Informatik, Universiat Tubingen, Germany

email: simonis@informatik.uni-tuebingen.de

May 8, 2004

Abstract

Modern GUI programs offer the possibility to easily access status informations and functionalities by means of
various menus, toolbars and information panels. However, as a program becomes more complex, or in the case where
users have the possibility to configure and extend these components, they often tend to get overfilled. This leads to
scrambled or even truncated components.

This article introduces a new container component called11ableBar, which can be used as a wrapper for any

Swing component. As long as there is enough place to layout the contained componehtableBar is completely

transparent. As soon as the available space gets too small howevet,]ableBar will fade in two small arrow

buttons on the left and the right side (or on the top and the bottom side if in vertical mode), which can be used to scroll

the underlying component, thus avoiding the above mentioned problems.
ScrollableBaris alightweight container derived frodtomponent which uses the standard Swing clas¥égew-

port andJButton to achieve its functionality. It fills a gap in the set of the standard Swing components and offers the

possibility to create more robust and intuitive user interfaces.

1 Introduction

Every professional applications comes with a fancy
graphical user interface today and with Swing, the stan-
dard widget set of Java, it is quite easy to create such ap-
plications. However, the design and implementation of
a robust and user friendly GUI is not a trivial task. One
common problem is the fact that the programmer has
no knowledge about the clients desktop size. This may
vary today from the standard notebook and flat panel
resolution of 1024x768 to 1900x1200 for high end dis-
plays. Even worse, Java applications can run on many
other devices like for example mobile phones, which
have an even more restricted resolution.

Another challenge arises from the extensibility of ap-
plications. While having the possibility to extend an
application with various plugins may be a nice feature
for the user, the fact that these plugins will populate the
menus and toolbars in an unpredictable way imposes
new problems on the programmer.

=w Stylepad

[«| File Edit Color Font Debui »|

D0

=1

[

[

[

&

E

S |

NEIIEN =

ALICE'S

ADVENTU
RES IN

WONDERL

AND

i

Paragraph: |14/ <] 1] » ||| Fo

z

%

Figure 1: Stylepad with scrollable menu, tool and status bars.

3 THE IMPLEMENTATION 2

One possibility to solve these problems is to limit toolbars and other status bars and information panels.
the size of the GUI components to a certain minimal To get a visual impression of how the modified compo-
size. However, this may impose unnecessary restric-nents will look like compare the figurg$ 3 1. They
tions on the user. (Think for example of somebody who both show a screen-shot of the Stylepad demo applica-
by default works with such an application, which needs tion shipping with every JDK which has been extended
at least a resolution of 1024x768 but who occasionally by a vertical toolbar and a useful status bar (see figure
gives demo talks with a beamer which only supports[@). While the menu, status bar and the toolbars are trun-
an 800x600 resolution.) Furthermore, if an application cated and partially inaccessible in fig{ije 3, they can be
with a graphical user interface pretends to be resizablescrolled and are fully functional in figufé 1 by using the
by displaying a resizable frame, than the user expectsarrow buttons which have been faded in.
he will be able to resize it based on his needs, not the
programmer ones. =w| Stylepad = [O][=]

The second possibility is to do nothing and wait what File Edit Color Font Debug Help
happens. This is the way how most of the GUI appli-

cations are written today. Just compare figure 3 with D | E E % @ b

figure[4 and see how parts of the status- and toolbars
are cut of if the window is shrinked beyond its optimal
ALICE'S
ADVENTU

size. In the best case, the user could just reenlarge the

application if this happens. In the worst case, if she is

working on a device with a restricted resolution, it may

be impossible to access the desired functionality. In any

case such an application looks highly unprofessional! RES I N

The solution for all the above mentioned problems AN D

would be scrollable menus and toolbars. However =

Swing, as many other widget sets, does not offer such | Paragraph: |ﬂ|ﬂ|ﬂ|ﬂ|ﬂ| Font: a

kind of components. Using the standaxtrol1Pane L I

component as a container for menus and toolbars is

not an option here, becausgcrol1Pane is too heavy Figure 3: The Stylepad application from figufé 4 with trun-

weight. Its scrollbars are simply too big. But there is ¢ated tool and status bars.

another Swing component which can serve us as a tem-

plate: since version 1.4, ti@abbedPane class offers the . .

possibility to scroll its panes instead of wrapping them 3 The |mplementat|on

on several lines if they do not fit on a single line. As

can be seen in figufg 2, arrow buttons for moving the I will now describe how to implement a class called

tabs have been added at the upper right part (for moreScrollableBar, which can serve as a container for a

information see’[6]). java.awt.Container object or any other object derived

from it. Most of the time,Scrol1lableBar objects are

completely transparent. Only if the place required by

the wrapped component for layout becomes too small,

theScrollableBar object will fade in two arrow buttons
Mar at the left and right side of the component (or on the top

i . and the bottom side if in vertical mode) which can be

used to scroll the wrapped component. As soon as there
Figure 2: Example of alTabbedPane with the tab layout pol- will be again enough place for the layout of the enclosed

icy set toSCROLL_TAB_LAYOUT. component, these arrow buttons will disappear immedi-
We now want to achieve the same behavior for menus,ately.

F

2 Scrollable menus and toolbars!

B2 | | ([E | [| 2

Apr |/Ma1.r |/Jun rJuI rAug

3 THE IMPLEMENTATION 3

atylepad

Edit Color Font Debug Help

= I=IE RN

ALICE'S ADVENTURES IN
WONDERLAND

Lewis Carroll

b T

u

o | |22 | EO DD E

THE MILLENNIUM FULCRUM EDITION 3.0

i CHAPTER V

H - -

— Advice from a Caterpillar

E The Caterpillar and Alice leoked at each other for some time in silence: -
Paragraph: |M|ﬂ|j|ﬂ|MI Font: SansSerif Fontsize: 32 I Eold: I ltalic

I

Figure 4: The Stylepad application at preferred size.

3.1 The Swing architecture

For a better understanding of tBero11ableBar imple-
mentation, it is helpful to take a closer look at the ar-
chitecture of Swing. The Swing library is a modern
widget set based on the Model-View-Controller (MVC)
pattern [2]. But while the classical MVC pattern con-
sists of three independent parts, namely the model, the
view and the controller, Swing uses a simplified version -
of this pattern where the view and the controller part
are combined in a so called Delegdfe[7, 1] (see figures

Bland).

Controller

AS an example, fIgUI’ElG ShOWS hOW thIS MOde|- Figure 5: The classical MVC pattern.
Delegate pattern applies to theutton class. In Swing,
all visible components are descendants of benpo- ComponentUI. These delegates are called user interface

nent class. They usually capsule a component specific(Ul) classes in Swing. They are Look and Feel specific,
model with a delegate object, which is a descendant ofi.e. they are used to implement the different Look and

3 THE IMPLEMENTATION

Feel dependent properties of a component, but they cariisting 1: ScrollableBar.javdLine 30to 41] (continued)

also be used for other kinds of customization, like for
example localizatiori [4].

JButton

DefaultButtonModel

|IIMHHH|I|

A

y MetalButtonUI

Delegate

< = Controller
J

Figure 6: The Model-Delegate pattern used in Swing.

One of the main responsibilities of the Ul delegate is
to paint the component it is tied to. In contrast to the
AWT library, in Swing it is not thepaint () method of
every component which does the work of painting itself.
Instead, the componentaint () method just calls the
paint () method of its delegate with a reference to itself.

3.2 TheScrollableBar class

Figure[T shows the class diagram of theollableBar
class. As already mentioned, it is derived fro@ampo-
nent. It also implements théwingConstants interface
in order to easily access the constaBIZONTAL and
VERTICAL which are defined there.

ScrollableBar has 4 properties. The two boolean
propertieshorizontal andsmall store the orientation of

this.comp = comp;
if (orientation == HORIZONTAL) {

horizontal = true;
}
else {

horizontal = false;

1

small = true; // Arrow size on scroll button.

inc = 4;

updateUI();
}

// Scroll width in pixels.

Notice the call taupdateUI() in the last line of the con-
structor. As can be seen in listiig) @dateUI() calls
the static methodetUI() from the clasdJIManager to
query the right Ul delegate and associates it with the
currentScrollableBar object.

Listing 2: ScrollableBar.javdlLine 45to0 52]

public String getUIClassID() {
return "ScrollableBarUI";

}

public void updateUI() {
setUI(UIManager.getUI(this));
invalidate();

UIManager.getUI() callsgetUIClassID() (see listind P)

to get the key which is used to query the actual Ul del-
egate from a Look and Feel dependent internal table.
Usually, the association of the standard Swing compo-

the component and the size of the arrows on the scrollnents to the appropriate Ul classes is done by the differ-

buttons. The integer propertync stores the amount
of pixels by which the enclosed component will be

scrolled if one of the arrow buttons is being pressed.
Smaller values lead to a smoother but slower scrolling.

Finally, the wrapped component is stored in toep
property. Whilehorizontal is a read-only property

ent Look and Feels while they are initialized. However,
as we are writing a new component, we have to establish
this link manually, as shown in the following listing:

Listing 3: ScrollableBar.javflLine 19to 22]

which can only be set in the constructor, the other threestatic {
properties are read/write bound properties in the sense UIManager.put("ScrollableBaruI",

described in the Java Beans specification [3].
The following listing shows the two-argument con-
structor of theScrollableBar class:

Listing 1: ScrollableBar.javdlLine 30to 41]

public ScrollableBar(Component comp, int orientation) {

"com. languageExplorer.widgets.«
ScrollableBarUI");
}

Notice that linking a component to its Ul delegate in
this way results in one and the same Ul class being used
independently of the actual Look and Feel.

3 THE IMPLEMENTATION

«interface»
javax.swing.SwingConstants

javax.swing.JComponent

ScrollableBar

-horizontal : boolean

1 -small : boolean

«interface» «interface»
javax.swing.event.ChangeListener| java.beans.PropertyChangeListener

«interface»

«interface»
java.awt.event.MouseL.istener| javax.swing.SwingConstants|

|javax.swing.plaf.ComponentUI|

ScrollableBarUl

-sb : ScrollabeleBar
-scroll : JViewport
-scrollF : JButton

-inc : int

-comp : Component

+ScrollableBar(in comp : Component)
+ScrollableBar(in comp : Component, in orientation : int)|
+getUIClassID()

+updateUl()

+getComponent() : Component
+setComponent(in comp : Component)
+getincrementy() : int

+setincrement(in inc : int)
+isSmallArrows() : boolean
+setSmallArrows(in small : boolean)
+isHorizontal() : boolean

java.awt.Component

javax.swing.JButton

2

‘—' javax.swing.JViewport

1

-scrollB : JButton

-pressed : boolean

-inc : int
+createUl(in ¢ : JComponent) : ComponentUl
+installUl(in c : JComponent)

+uninstallUl(in ¢ : JComponent)
+propertyChange(in e : PropertyChangeEvent)
+stateChanged(in e : ChangeEvent)
+mouseExited(in e : MouseEvent)
+mouseReleased(in e : MouseEvent)
+mousePressed(in e : MouseEvent)
#createButton() : JButton

Figure 7: The UML class diagram d§crollableBar andScrollableBarUI.

Besides the getter and setter methods for the corre-isting 4: ScrollableBarUl.javdLine 51 to 106] (continued)

sponding properties, there is no more functionality in
theScrollableBar class. All the painting and user inter-
action is handled by the Ul delegaterollableBarUl.

3.3 TheScrollableBarUI class

One of the most important methods of the Ul classes is
instal1UI() which is called every time when a compo-
nent is being associated with its Ul delegate. This gives
the Ul delegate a chance to properly initialize itself and
the component it is responsible for.

Listing 4: ScrollableBarUl.javdLine 51to 106]

public void installUI(JComponent c) {

sb = (ScrollableBar)c;

sh.getIncrement();
boolean small = sh.isSmallArrows();

inc

// Create the Buttons
((Integer) (UIManager.get(«
"ScrollBar.width"))).intValue();
scrol1B = createButton(sb.isHorizontal () ?WEST:NORTH,
shSize, small);

int sbSize

scrol1B.setVisible(false);
scrol1B.addMouselListener(this);

scrol1F = createButton(sb.isHorizontal()?EAST:SOUTH,

shSize, small);
scrol1F.setVisible(false);
scrol1F.addMouselListener(this);

sbh.isHorizontal () ?BoxLayout.X_AXIS:«
BoxLayout.Y_AXIS;
sb.setlLayout (new BoxLayout(sh, axis));

int axis

scroll = new JViewport() {
. See source code ...
}s

Component box = sb.getComponent();

scroll.setView(box);

sb.add(scrol1B);
sb.add(scroll);
sb.add(scrol1F);

// Install the change listeners

scroll.addChangelListener(this);

sbh.addPropertyChangelListener(this);
}

In our case, the Ul delegate queries and stores the com-
ponents properties along with a reference to the compo-
nent itself as private instance variables. Further on, it
creates two arrow buttons and an object of typeew-

port which is used to wrap the scrollable component.

3 THE IMPLEMENTATION 6

Based on the orientation of the associatecbi1able- Listing 5:O|S”0”ab'eBarU|-JaniLine 174t0 238]
Bar object, the newly created elements are then beingM)
added to it by using a vertical or horizontal box lay- } catch (InterruptedException ie) {}

out. Notice that the scroll buttons are initially set to be }

invisible. Finally, the Ul object registers itself as prop- }

erty change listener on the associated component, as a j),

change listener on the viewport and as a mouse listener ¢.o11er.start();
on the arrow buttons. }

The Ul delegate gets informed about every size
change of theScrollableBar object and the wrapped
component, by a receiving éhangeEvent from the
viewport object. Depending on the new sizes, it can " X
change the visibility state of the arrow buttons and re- VIeWport components which we used. _
layout the component. Property changes inghe1- After we haye discussed the main parts of the im-
TableBar object are signaled to the Ul delegate by a plemgn_tanon, It ShO_U|d 'F’e evident why the advantages
PropertyChangeEvent. Based on these events, it can up- of dividing the functionality of the&scrollableBar class

date the internally cached values of these properties. N0 two classes outweigh the coding overhead. First
Finally, the events resulting from the user interac- ©f all we cleanly separated the properties of the com-

tions on the scroll buttons are handled by the different PoNent from the way how it is displayed and how it in-

mouse listener methods. The Ul delegate keeps a pri_teracts with the user. Secondly, it is very easy now to

vate boolean instance variahjeessed which is set to define a new Ul delegate which renders the component

true if a button was pressed and which is reset to false!l @ different way or to just derive a new Ul delegate

as soon as the button is released or the mouse pointeff®™M the existing one which slightly adopts appearance

leaves the button. As can be seen in lisfihg 5 pressingor user interaction properties to a specific look and feel.
one of the buttons also starts a new thread which scrolls

the underlying component binc pixels in the corre- 4 Using theScrollableBar class
sponding direction and than sleeps for a short amount

of time. These two actions are subsequently repeated inJsjng thescrol1ableBar class is very easy and straight
the thread as long as the value of the instance variabl&gpward. In fact we can wrap every arbitrary Swing
pressed is true, while the amount of sleeping time is component inside scrol1ableBar object by passing it
reduced in every iteration step. This results in a contin- 55 argument to the constructor when creating the ob-
uously accelerating scrolling speed, as longer the US€liect. For the example application shown in figfite 1 it

It should be noticed that we need no special paint
method for theScrollableBarUI class, because paint-
ing occurs naturally from the standard Swing button and

keeps on pressing the arrow button. was only necessary to change a single line:
Listing 5: ScrollableBarUl.javdLine 174to 238] JToolBar toolbar = new JToolBar();
public void mousePressed(MouseEvent e) { panel.add("North", toolbar);

pressed = true; from the original Stylepad application into:

final Object o = e.getSource();

Thread scroller = new Thread(new Runnable() { JToolBar toolbar = new JToolBar();
public void run() {
int accl = 500; panel.add("North", new ScrollableBar(toolbar));
while (pressed) { in order to make the horizontal toolbar scrollable if the
Point p = scroll.getViewPosition(); space becomes too small to render it as a whole.

. Compute new view position ... In general, thescrollableBar class is more recom-
scroll.setViewPosition(p); mended for wide and not very high components in hor-
try { izontal mode and narrow and high components in verti-

Thread.sleep(accl); cal mode. If used for other components the scroll but-

if (accl <= 10) accl = 10; tons would get too big and take up too much space to

else accl /= 2; be really useful.

5 CONCLUSION 7

4.1 Menu bars inJFrame objects These modifications finally give the desired result. A

] o call to setdMenuBar() on aSMJFrame object will be for-
As shown in the last section it is very easy to use theyarged to the customized root pane. There, the menu
ScrollableBar class in your own applications. EVEN Up- a1 il be wrapped into acrol1abelBar object before
grading existing applications is not very hard. The only j; \yi|| pe actually added to the frame. Because the cus-
problem which may arise is in the case whez®1- {ymized root pane uses a customized layout manager,
lableBar should be used as a wrapper for a menu bari; \vijl handle the scrollable menu bar in the same way
which will be added directly to @Frame object. (No- 5 \which aJFrame object handles an ordinary menu bar.

tice that in our example application, the menu bar hasyiih respect to all other concerrssiFrane behaves ex-
been added to apanel object before the whole panel ey jike its ancestosFrane.

has been added to thierame object.)

The problem arises becauserame provides a spe- .
cialized setdMenuBar () method for adding menu bars 4.2 Limitations
and this method expects an argument of TyjuBar.

At a first glance, we could just use one of the generic
add() methods defined iaFrame’s ancestor classes in-
stead. However, if we take a closer look, we will see
that the problem is a little bit more complex.

The only limitation for the use of th&crollableBar
class so far is that it can not handle floating tool bars.
This is becauseToo1Bar objects have to be laid out into
a container whose layout manager is of tgpederLay-

out if they want to be floatable. Additionally, no other

_ First of all, in the case QfFrame, children are not be- children can be added to any of the other four "sides”.
ing added to the component directly, but to the so called g js obviously not the case, if the toolbar is wrapped
‘root pane”, which is a special child component of ev- jqiqe ascrollableBar object.

ery JFrame. However, we also can not add the menu bar - gy this problem would require extensive changes
directly to the root pane, because the root pane itselfi, p.c;1501aru1, the U delegate ofToolBar. Unfor-
also has a special method callegtaMenuBar() which 4,540y hecause not all the methods which need to be
expects alMenuBar object as argument. Using this . s1omized are declared public or protected, in fact a

method for adding menu bars is essential, because °n|¥:omplete rewrite of the delegate would be necessary.
if it is used theRootLayout layout manager used by the

JRootPane class will honor the presence of the menu bar.
RootLayout, which is a protected inner class &foot- 5 Conclusion
Pane, uses the protectedRootPane property menuBar

which has been set byRootPane.setdMenuBar() for — This paper presented a quite small and simple, yet very
layout calculations. powerful container class which fills a gap in the set of
To cut a long story short, we have to create a standard Swing components. Using it involves no over-
new SMJFrame class (Wh|Ch stands for Scrollable Menu head, neither at deve|opment time nor at run time but
JFrame) which overrides theeateRootPane() method yijelds a lot of benefits. The most important ones are:
to return a new, customized root pane class. For thispetter usability and user friendliness and more robust

purpose we just derive an anonymous class fieoat - and intuitive GUI applications.
Pane which overrides the two methodetJMenuBar() The source code presented in this paper is available
andcreateRootLayout (). from http://www.progdoc.org/ScrollableBar.jar.

setJMenuBar(), the first one of this two methods
wraps the menu bar into o6erol1ableBar class, before
storing it as a protected instance variable and adding itG Colophon
to the layered pane which is a part of the root pane.

The second methodreateRootLayout() returns an This paper has been typeset witbHATEX using the
anonymous class which inherits from thiRootPane twocolumn mode. The screen shots have been pre-
protected inner claskootLayout. It overrides the lay- pared with XV and Ghostscript. The figures have been
out methods in that class in such a way, that they usepainted with XFig while the UML class diagrams have
the ScrollableBar instance variable for layout calcula- been done with Visio. The source code presented in this
tions instead of using the bare menu bar, as it was donegaper has been included and highlighted with the pro-
by the original version of the methods. gram documentation systeProcDOC[5].

http://www.progdoc.org/ScrollableBar.jar

REFERENCES

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

R. Eckstein, M. Loy and D. WootlJava Swing”,
O'Reilly, 1998

E. Gamma, R.Helm, R. Johnson and J. Vlissides
“Design Patterns: Elements of Reusable Object-
Oriented Software] Reading, MA, Addison-
Wesley, 1995

Graham Hamilton (Ed.JavaBeansSun Microsys-
tems, Version 1.01-A, August 1997 available at:
http://java.sun.com/beans

Volker Simonis International Swinging: Making
Swing Components Locale-SensitWAC++ Users
Journal, Java Supplement, August 2002 available
at: http://www.cuj.com/java/jsup2008/

Volker SimonisProcDOC - The Program Docu-
mentation Systemvailable at http://www.progdoc.
org

John Zukowski“Magic with Merlin: Scrolling
tabbed panes” available at: http://www-106.ibm.
com/developerworks/java/library/]-mer0905/

John Zukowski and Scott StanchfieldFunda-
mentals of JFC/Swing, Part II” MagelLang In-
stitute, available athttp://developer.java.sun.com/
developer/onlineTraining/GUI/Swing2

http://java.sun.com/beans
http://www.cuj.com/java/jsup2008/
http://www.progdoc.org
http://www.progdoc.org
http://www-106.ibm.com/developerworks/java/library/j-mer0905/
http://www-106.ibm.com/developerworks/java/library/j-mer0905/
http://developer.java.sun.com/developer/onlineTraining/GUI/Swing2
http://developer.java.sun.com/developer/onlineTraining/GUI/Swing2

	Introduction
	Scrollable menus and toolbars!
	The implementation
	The Swing architecture
	The ScrollableBar class
	The ScrollableBarUI class

	Using the ScrollableBar class
	Menu bars in JFrame objects
	Limitations

	Conclusion
	Colophon

