
International Swinging -
Making Swing Components Locale-Sensitive

Volker Simonis
WSI für Informatik, Universiẗat Tübingen, Germany

email: simonis@informatik.uni-tuebingen.de

June 17, 2002

Abstract

Although Java and its GUI library Swing provide software developers with a
highly customizable framework for creating truly “international” applications, the
Swing library is not locale-sensitive1 to locale switches at run time.

The consistent and exclusive use of Unicode together with the builtin libraries
for resource files and locales make it easy to create internationalized applications.
Taking into account Swings elaborate Model-View-Controller architecture, this pa-
per describes how to create GUI applications which are sensitive to locale changes
at runtime, thus increasing their usability and user friendliness considerably.

1 Introduction

Sometimes GUI applications are created with internationalization2 in mind, but are not
immediately fully localized3 for all target languages. In such a case a user native to
an unsupported language would choose the language he is most familiar with from the
set of supported languages. But the ability to easily switch the language at run time
could still be desirable for him if he knows more than one of the supported languages
similarly well.

Other applications like dictionaries or translation programs are inherently multi-
lingual and are used by polyglot users. Such applications would greatly benefit if the
user interface language would be customizable at runtime.

Unfortunately, this is not a builtin feature of the Java Swing GUI library. How-
ever this article will sketch how it is easily possible to customize Swing such that it
supports locale switching at runtime. Therefore a new Look and Feel called theMLMet-
alLookandFeel will be created, whereML is an abbreviation for “multi lingual”. This
new Look and Feel will extend the standard Metal Look and Feel with the ability of
being locale-sensitive at runtime.

As an example we will take theNotepad application which is present in every JDK
distribution in thedemo/jfc/Notepad/ directory. It is localized for French, Swedish and

1locale-sensitive: A class or method that modifies its behavior based on the locale’s specific requirements.
(All definitions taken from [JavaInt].)

2internationalization: The concept of developing software in a generic manner so it can later be localized
for different markets without having to modify or recompile source code.

3localization: The process of adapting an internationalized piece of software for a specific locale.

1

2 2 THE JAVA SWING ARCHITECTURE

Chinese, as can be seen from the different resource files located in theresources/ sub-
directory. Depending on the locale of the host the JVM is running on, the application
will get all the text resources visible in the GUI from the corresponding resource file.
The loading of the resource file is achieved by the following code:

Listing 1: Notepad.java [Line 59 to 65]

try {

resources = ResourceBundle.getBundle("resources.Notepad",

Locale.getDefault());

} catch (MissingResourceException mre) {

System.err.println("resources/Notepad.properties not found");

System.exit(1);

}

TheResourceBundle class will try to load the fileresources/Notepad XX YY.properties
whereXX is the two letter ISO-639 [ISO-639] language code of the current default
locale andYY the two letter ISO-3166 [ISO-3166] country code, respectively. For
more detailed information about locales have a look at the JavaDoc documentation
of java.util.Locale. The exact resolution mechanism for locales if there is no exact
match for the requested one is described atjava.util.ResourceBundle. In any case, the
file resources/Notepad.properties is the last fall back if no better match is found.

You can try out all the available resources by setting the default locale at program
startup with the two propertiesuser.language anduser.country4. To run theNotepad
application with a Swedish user interface you would therefore type:

java -Duser.language=sv Notepad

However, a user interface internationalized in this way is only customizable once, at
program startup. After the resources for the default locale are loaded, there is no way
to switch the locale until the next start of the program. We will call this type of in-
ternationalizationstatic internationalization. Throughout this paper we will change
Notepad.java to make itdynamicallyinternationalized, i.e. locale-sensitive at run time.
We will call this new applicationIntNotepad.

2 The Java Swing architecture

A GUI application is composed out of many UI components like labels, buttons, menus,
tool tips and so on. Each of these components has to display some text in order to be
useful. Usually, this text is set in the constructor of the component for simple compo-
nents like labels or buttons. Additionally, and for more complex components like file
choosers, the text can be set or queried withset andget methods.

Internationalized applications like theNotepad application do not hard code these
text strings into the program file, but read it from resource files. So instead of:

JFrame frame = new JFrame();

frame.setTitle("Notepad");

they use the following code:

4Be aware that setting the default locale on the command line with help of the mentioned properties does
not work with all JDK versions on all platforms. Refer to the bugs 4152725, 4179660 and 4127375 in
the Java Bug Database [JDB].

3

JFrame frame = new JFrame();

frame.setTitle(resources.getString("Title"));

whereresources denotes the resource bundle opened in Listing 1.
Basically, we could just reset all these strings at run time every time the user chooses

a different locale. But for an application which uses tens to hundreds of different com-
ponents it would not be practicable to manually do this. Even worse, some components
like JFileChooser do not even offer accessory methods for all the strings they display.
So we have to come up with another solution which requires a closer look at the archi-
tecture of the Swing GUI library.

The design of the Swing library is based on a simplified Model-View-Controller
[MVC] pattern, called Model-Delegate [ModDel]. Compared to the classical MVC
pattern, the Model-Delegate pattern combines the View and the Controller into a single
object called the Delegate (see figure 1). In Swing, these delegates, which are also
called the user interface (UI) of a component, are Look and Feel specific. They are
derived from the abstract classComponentUI. By convention have the name of the com-
ponent they are the delegate for with theJ in the component class name replaced by the
name of the specific Look and Feel andUI appended to the class name. So for example
the UI delegate forJLable in the Metal Look and Feel has the nameMetalLabelUI.

ModelModel

View Controller View Controller

DefaultButtonModel

MetalButtonUI

JButton

Delegate

Figure 1: The left side shows the common Model-View-Controller pattern, whereas the right
side shows the Model-Delegate pattern used in Swing along with the class realizations forJBut-
ton.

One of the tasks the UI delegate is responsible for is to paint the component it is
tied to. In contrast to the AWT library, in Swing it is not thepaint() method of every
component which does the work of painting itself. Instead, the component’spaint()
method just calls thepaint() method of its delegate along with a reference to itself.

3 The solution - idea and implementation

After knowing the internals of the Swing architecture, we are ready to make the Swing
components aware of locale switches at runtime. To achieve such a behavior, we will
introduce one more level of indirection. Instead of just setting a text field of a compo-
nent to the real string which should be displayed, we set the field to contain a key string
instead. Then we override the UI delegate in such a way that instead of just painting
the string obtained from its associated component, it will look up the real value of the
string to paint depending on the actual locale.

4 3 THE SOLUTION - IDEA AND IMPLEMENTATION

Let us substantiate this in a small example. Listing 2 shows how aJLabel is usually
created and initialized, followed by a code snippet taken from theBasicLabelUI.paint()
method which is responsible for rendering the label’s text:

Listing 2: Creating a usualJLabel and a part of theBasicLabelUI.paint() method.

// Create a label.

JLabel label = new JLabel();

label.setText("Hello");

// Taken from javax.swing.plaf.basic.BasicLabelUI.java

public void paint(Graphics g, JComponent c) {

JLabel label = (JLabel)c;

String text = label.getText();

// Now do the real painting with text.

...

}

We will now create a new UI delegate forJLable calledMLBasicLabelUI which over-
rides thepaint() method such that it not simply queries the text from theJLable and
renders it. Instead it interprets the string received from its associatedJLable as a key
into a resource file which is of course parameterized by the current Locale. Only if
it doesn’t find an entry in the resource file for the corresponding key, it will take the
key text as the string to render. Thus, the changes in the UI are fully transparent to the
component itself.

3.1 Getting the localized resource strings

Because this procedure of querying the localized text of a component from a given
resource file will be common for all UI delegates which we will create for our Multi
Lingual Look and Feel, we put the code into a special static method calledgetRe-
sourceString():

Listing 3: ml/MLUtils.java [Line 35 to 44]

public static String getResourceString(String key) {

if (key == null || key.equals("")) return key;

else {

String mainClass = System.getProperty("MainClassName");

if (mainClass != null) {

return getResourceString(key, "resources/" + mainClass);

}

return getResourceString(key, "resources/ML");

}

}

This method builds up the name of the resource file which is searched for the localized
strings. Therefore it first queries the system properties for an entry calledMainClass-
Name. If it succeeds, the resource file will be a file with the same name in theresources/

3.2 Overloading the paint() method of the UI delegates 5

subdirectory. If not, it will assumeML as the default resource file name. This file name
along with the originalkey argument are passed to the second, two parameter version
of getResourceString(), shown in Listing 4.

Listing 4: ml/MLUtils.java [Line 50 to 76]

private static Hashtable resourceBundles = new Hashtable();

public static String getResourceString(String key, String baseName) {

if (key == null || key.equals("")) return key;

Locale locale = Locale.getDefault();

ResourceBundle resource =

(ResourceBundle)resourceBundles.get(baseName + " " + locale.toString());

if (resource == null) {

try {

resource = ResourceBundle.getBundle(baseName, locale);

if (resource != null) {

resourceBundles.put(baseName + " " + locale.toString(), resource);

}

}

catch (Exception e) {

System.out.println(e);

}

}

if (resource != null) {

try {

String value = resource.getString(key);

if (value != null) return value;

}

catch (java.util.MissingResourceException mre) {}

}

return key;

}

This method finally does the job of translating the key text into the appropriate localized
value. If it can not find the corresponding value for a certain key it just returns the key
itself, consequently not altering the behavior of a component which isn’t aware of the
multi lingual UI it is rendered with.

Notice that for performance reasons,getResourceString() stores resource files in a
static map after using them for the first time. Thus, any further access will use this
cached version, without the need to reload the file once again.

3.2 Overloading thepaint() method of the UI delegates

After having understood the way how localized strings can be queried with the func-
tions introduced in Listing 3 and 4, the overloaded version of thepaint() method
in MLBasicLabelUI (Listing 5) should be no surprise. Additionally, the label is now
initialized to"MyApplication.HelloString" which is a key into the possibly localized
resource fileresources/MainClassName XX YY.properties.

6 3 THE SOLUTION - IDEA AND IMPLEMENTATION

Listing 5: A locale-sensitiveJLabel and thepaint() method ofMLBasicLabelUI.

// Create a locale-sensitive label which has a MLBasicLabelUI delegate.

JLabel label = new JLabel();

label.setText("MyApplication.HelloString");

// Taken from MLBasicLabelUI.java which inherits from BasicLabelUI.

public void paint(Graphics g, JComponent c) {

JLabel label = (JLabel)c;

String text = MLUtils.getResourceString(label.getText());

// Now do the real painting with text.

...

}

Notice that a string which will not be found in the resource file will be displayed “as is”
in the label. So our example would work perfectly fine even with the usual component
UI, it only would not respond to locale changes at run time.

If we want to make the GUI of a whole application locale-sensitive at runtime, we
have to create new UI classes for each Swing component we use in our GUI. This
sounds like a lot of work to do, but in fact we just have to redefine the methods which
query text data from the component they are associated with.

One problem which we may encounter is the fact that in Swing actual Look and Feels
like the Metal Look and Feel or the Windows Look and Feel use their own UI classes
which are not directly derived fromComponentUI (see figure 2). Instead all the different
UI classes for a single component inherit from a class calledBasicXXXUI whereXXX
stands for an arbitrary component name. This is done to factor out all the functionality
which is common to all the different Look and Feels into one base class.

ComponentUI

paint(...);
...

LabelUI

...

MLBasicLabelUI

paint(...);
...

MLMetalLabelUI

...

MetalLabelUI

...

WindowsLabelUI

...

BasicLabelUI

paint(...);
...

package javax.swing.plaf package javax.swing.plaf.basic

package ml.basic package ml.metal

package javax.swing.plaf.metal

package javax.swing.plaf.windows

Figure 2: The class hierarchy of the component UI classes of Swing forJLabel. In this
diagram,Label may be substituted by any other Swing component likeButton, Tooltip and so
on. The two classes in the upper part of the diagram from the packageml are the locale-sensitive
UI classes developed in this paper.

This makes our job more difficult, because usually we would like to override the
UI’s of a distinct Look and Feel, but often the task of querying and painting the actual
text is done only or at least in part in theBasicXXXUI base classes. Therefore we need
to specialize two classes. First we have to specialize theBasicXXXUI class for our

3.2 Overloading the paint() method of the UI delegates 7

component and redefine the methods which query the text fields of our component.
We will call this classMLBasicXXXUI. Then we have to copy and rename the actual
component UI belonging to our desired Look and feel fromMetalXXXUI to MLMetalXXXUI
and change the base class from which it inherits fromBasicXXXUI to MLBasicXXXUI
which is the name of our overloaded version ofBasicXXXUI. Again, Metal is just an
example here. It could be just as wellWindows, Motif or any other Look and Feel.
Additionally, if necessary, we have to redefine the methods inMLMetalXXXUI which
display text attributes from our associated component.

After having implemented all the needed UI delegates, we have to tell our application
in some way to use the new delegates instead of the old, default ones. This can be
done in two ways. The first one, which is perhaps more simple, is to just register our
delegates with the component names at program startup as shown in Listing 6.

Listing 6: Associating Swing components with their UI delegates.

UIManager.put("ToolTipUI", "ml.mllf.mlmetal.MLMetalToolTipUI");

UIManager.put("LabelUI", "ml.mllf.mlmetal.MLMetalLabelUI");

UIManager.put("MenuUI", "ml.mllf.mlbasic.MLBasicMenuUI");

UIManager.put("MenuItemUI", "ml.mllf.mlbasic.MLBasicMenuItemUI");

UIManager.put("ButtonUI", "ml.mllf.mlmetal.MLMetalButtonUI");

UIManager.put("RadioButtonUI", "ml.mllf.mlmetal.MLMetalRadioButtonUI");

UIManager.put("CheckBoxUI", "ml.mllf.mlmetal.MLMetalCheckBoxUI");

UIManager.put("FileChooserUI", "ml.mllf.mlmetal.MLMetalFileChooserUI");

UIManager.put("ToolBarUI", "ml.mllf.mlmetal.MLMetalToolBarUI");

The second, perhaps more elegant way is to define a new Look and Feel for which the
new UI delegates which have been created by us are the default ones. This approach is
shown in Listing 7.

Listing 7: ml/mllf/mlmetal/MLMetalLookAndFeel.java [Line 22 to 44]

public class MLMetalLookAndFeel extends MetalLookAndFeel {

public String getDescription() {

return super.getDescription() + " (ML Version)";

}

protected void initClassDefaults(UIDefaults table) {

super.initClassDefaults(table); // Install the metal delegates.

Object[] classes = {

"MenuUI", "ml.mllf.mlbasic.MLBasicMenuUI",

"MenuItemUI", "ml.mllf.mlbasic.MLBasicMenuItemUI",

"ToolTipUI", "ml.mllf.mlmetal.MLMetalToolTipUI",

"LabelUI", "ml.mllf.mlmetal.MLMetalLabelUI",

"ButtonUI", "ml.mllf.mlmetal.MLMetalButtonUI",

"RadioButtonUI", "ml.mllf.mlmetal.MLMetalRadioButtonUI",

"CheckBoxUI", "ml.mllf.mlmetal.MLMetalCheckBoxUI",

"FileChooserUI", "ml.mllf.mlmetal.MLMetalFileChooserUI",

➥

8 3 THE SOLUTION - IDEA AND IMPLEMENTATION

Listing 7: ml/mllf/mlmetal/MLMetalLookAndFeel.java [Line 22 to 44] (continued)

"ToolBarUI", "ml.mllf.mlmetal.MLMetalToolBarUI",

};

table.putDefaults(classes);

}

}

Finally, after each locale switch we just have to trigger a repaint of the dynamically
internationalized components. This can be achieved by a little helper function as pre-
sented in Listing 8 which takes a root window as argument and simply invalidates all
the necessary child components.

Listing 8: ml/MLUtils.java [Line 106 to 112]

public static void repaintMLJComponents(Container root) {

Vector validate = recursiveFindMLJComponents(root);

for (Enumeration e = validate.elements(); e.hasMoreElements();) {

JComponent jcomp = (JComponent)e.nextElement();

jcomp.revalidate();

}

}

It uses another method namedrecursiveFindMLJComponents which recursively finds all
the child components of a given container. In the form presented in Listing 9, the
method returns all components which are instances ofJComponent, but a more sophisti-
cated version could be implemented which returns only dynamically internationalized
components.

Listing 9: ml/MLUtils.java [Line 154 to 173]

private static Vector recursiveFindMLJComponents(Container root) {

// java.awt.Container.getComponents() doesn’t return null!

Component[] tmp = root.getComponents();

Vector v = new Vector();

for (int i = 0; i < tmp.length; i++) {

if (tmp[i] instanceof JComponent) {

JComponent jcomp = (JComponent)tmp[i];

if (jcomp.getComponentCount() == 0) {

v.add(jcomp);

}

else {

v.addAll(recursiveFindMLJComponents(jcomp));

}

}

else if (tmp[i] instanceof Container) {

v.addAll(recursiveFindMLJComponents((Container)tmp[i]));

}

}

➥

3.2 Overloading the paint() method of the UI delegates 9

Listing 9: ml/MLUtils.java [Line 154 to 173] (continued)

return v;

}

Notice that the version ofrepaintMLJComponents shown in Listing 8 only works for
applications with a single root window. If an application consists of more than one root
window or if it uses non-modal dialogs, they also have to be repainted. This can be
done by defining a static methodregisterForRepaint (Listing 10) for registering the
additional windows and dialogs and by extendingrepaintMLJComponents in a way to
take into account these registered components.

Listing 10: ml/MLUtils.java [Line 142 to 146]

private static Vector repaintWindows = new Vector();

public static void registerForRepaint(Container dialog) {

repaintWindows.add(dialog);

}

The new version ofrepaintMLJComponents() is shown in Listing 11:

Listing 11: ml/MLUtils.java [Line 116 to 138]

public static void repaintMLJComponents(Container root) {

Vector validate = recursiveFindMLJComponents(root);

Iterator it = repaintWindows.iterator();

while (it.hasNext()) {

Container cont = (Container)it.next();

validate.addAll(recursiveFindMLJComponents(cont));

// Also add the Dialog or top level window itself.

validate.add(cont);

}

for (Enumeration e = validate.elements(); e.hasMoreElements();) {

Object obj = e.nextElement();

if (obj instanceof JComponent) {

JComponent jcomp = (JComponent)obj;

jcomp.revalidate();

}

else if (obj instanceof Window) {

// This part is for the Dialogs and top level windows added with the

// ’registerForRepaint()’ method.

Window cont = (Window)obj;

cont.pack();

}

}

}

10 3 THE SOLUTION - IDEA AND IMPLEMENTATION

3.3 The Locale Chooser

After we discussed in detail the techniques necessary to make Swing components aware
of locale switches at runtime there remains as last step the presentation of a widget
which displays all the available locales to the user and allows him to choose from this
list a new default locale.

Figure 3 and 4 show the newIntNotepad application with the builtin locale chooser.
Additionally, the originalNotepad was extended by a permanent status bar to demon-
strate locale switches for labels. The first figure shows the application with the English
default locale while the user is just switching it to Russian.

Figure 3: A screen shot of theIntNotepad application. The user just selects Russian as the
default locale with the new locale chooser, which is located on the right side of the tool bar.

Figure 4 shows the application after the switch to Russian. Menus, labels, buttons
and even tool tips are now displayed with Cyrillic letters in Russian language. Notice
that the size of the menus has been resized automatically in order to hold the longer
Russian menu names.

Figure 4: This screen shot shows theIntNotepad application after the default locale has been
switched to Russian. Labels, menus and even tool tips appear in Russian now.

The classLocaleChooser is a small extension of aJComboBox with a custom renderer
which displays each available Locale with a flag and the name of the corresponding
language. The language name is displayed in its own language if available and in
English otherwise. Please notice that there is no one to one mapping between languages
and country flags, as many languages are spoken in more than one country and there are
countries in which more then one language is spoken. Therefore one must be careful

3.4 Putting it all together 11

when choosing a flag as representation for a language to not hurt the feelings of people
who speak that language in a different country. After all, the flags should be just visual
hints to simplify the selection of a particular language.

The LocaleChooser constructor expects as parameters aString which denotes the
resource directory of the application and aContainer which will be the root component
passed to therepaintMLJComponentes() method presented in Listing 8 when it comes
to a repaint of the application caused by a locale switch.

For every language or language/country combination the resource directory passed
to theLocaleChooser constructor should contain a subdirectory named by the two letter
language code or the two letter language code plus an underscore plus the two letter
country code, respectively. Each of this subdirectories should contain a fileflag.gif
which will be the image icon displayed by theLocaleChooser for the corresponding
language.

Thus, adding more locales to the list of locales displayed byLocaleChooser is merely
a fact of adding the corresponding directories and files to the resource directory and
does not require a recompilation ofLocaleChooser. Remember however that for a locale
switch to show any effects a resource file with the localized component strings has to
be available as well.

3.4 Putting it all together

Finally, after the discussion of all the details involved in making Swing components
aware of locale switches at runtime, we will summarize the important steps and show
how they fit into the big picture of a real application.

First of all the new component UI delegates have to be created for all the components
which should be dynamically internationalizable. These UI delegates should be packed
together into a new Look and Feel which is derived from an already existing Look and
Feel. This way we don’t have to create UI delegates for the full set of Swing com-
ponents at the very beginning, but we have the possibility to stepwise extend our new
Look and Feel for new components. Creating the UI delegates has been extensively
described in section 3.

Once our new Look and Feel is available, we can start to modify our application
to make it locale-sensitive at run time. The first step is to set the system property
MainClassName to the name of our application. This information will be needed by the
getResourceString() method (see Listing 3) presented in section 3.1. Then we have to
set our new Look and Feel as the standard Look and Feel for our application. These
two steps can be achieved by the following two lines of code:

System.setProperty("MainClassName", "IntNotepad");

UIManager.setLookAndFeel(new MLMetalLookAndFeel());

As a third step, we have to install an instance of theLocaleChooser presented in section
3.3 somewhere in our application. Usually this will be the tool bar, but it can also be
installed in a menu or in a special options window along with other configuration op-
tions. TheLocaleChooser has to be instantiated with a reference to the main application
window, in order for the repaint method shown in Listing 8 to work properly.

That’s all. From now on, whenever we create a new Swing component, we have the
choice of setting its string attributes to either a concrete string or just to a key value.
If the string attribute is available in the applications resource file as a key, its value
will be displayed instead, according to the current default locale. Otherwise, the string
attribute itself will be displayed.

12 REFERENCES

4 Conclusion

This paper presented a technique to make Swing components locale-sensitive at run
time. It works by simply creating a new Look and Feel, without changing any code in
the components themselves. As example theIntNotepad application was derived from
the Notepad example application available in every JDK distribution.IntNotepad is
aware of local changes and rebuilds the whole user interface every time such a change
occurs at run time. Together with all the other source code presented in this paper it is
available for download at [IntNotepad].

Notice that by using the techniques presented here, it would be possible to lift the
entire Swing library and make it locale-sensitive for run time locale switches without
any compatibility problems with older library versions.

Finally I want to thank Roland Weiss and Dieter Bühler for their assistance and for
reviewing this paper.

References

[IntNotepad] Volker Simonis “The source code for the MLMetal Look and
Feel and IntNotepad” , available at: http://www-ca.informatik.uni-
tuebingen.de/people/simonis/papers/intSwing/IntNotepad.jar

[ISO-639] ISO “The ISO-639 two letter language codes”, available at:
http://www.unicode.org/unicode/onlinedata/languages.html

[ISO-3166] ISO “The ISO-3166 two letter country codes”, available at:
http://www.unicode.org/unicode/onlinedata/countries.html

[JavaInt] Andrew Deitsch and David Czarnecki
“Java internationalization”, O’Reilly & Associates, 2001

[JDB] Sun Microsystems, Inc.“The Java Bug Database”, available at:
http://developer.java.sun.com/developer/bugParade

[JILT] Sun Microsystems, Inc.“Java Internationalization and Localization
Toolkit 2.0”, available at: http://java.sun.com/products/jilkit

[MVC] E. Gamma, R.Helm, R. Johnson and J. Vlissides
“Design Patterns: Elements of Reusable Object-Oriented Software”,
Reading, MA, Addison-Wesley, 1995

[ModDel] John Zukowski and Scott Stanchfield
“Fundamentals of JFC/Swing, Part II”, MageLang Institute, available
at: http://developer.java.sun.com/developer/onlineTraining/GUI/Swing2

http://www-ca.informatik.uni-tuebingen.de/people/simonis/papers/intSwing/IntNotepad.jar
http://www-ca.informatik.uni-tuebingen.de/people/simonis/papers/intSwing/IntNotepad.jar
http://www.unicode.org/unicode/onlinedata/languages.html
http://www.unicode.org/unicode/onlinedata/countries.html
http://developer.java.sun.com/developer/bugParade
http://java.sun.com/products/jilkit
http://developer.java.sun.com/developer/onlineTraining/GUI/Swing2

	Introduction
	The Java Swing architecture
	The solution - idea and implementation
	Getting the localized resource strings
	Overloading the paint() method of the UI delegates
	The Locale Chooser
	Putting it all together

	Conclusion

