
ProgDOC - a Program Documentation System

Volker Simonis
Wilhelm-Schickard-Institut f̈ur Informatik

Universiẗat Tübingen, 72076 T̈ubingen, Germany
E-mail : simonis@informatik.uni-tuebingen.de

Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

Abstract

Though programming languages and programming styles evolve with remark-
able speed today, there is no such evolution in the field of program documentation.
And although there exist some popular approaches like Knuth’s literate program-
ming system WEB [Web] and nowadays JavaDoc [JDoc] or DOC++ [DOCpp],
tools for managing software development and documentation are not as widespread
as desirable. This paper introduces a small tool box of utilities which can be used
to easily produce nicely formatted PostScript, PDF and HTML documentations for
software projects with LATEX. It is especially useful for mixed language projects
and for documenting already finished programs and libraries. Due to it’s sophis-
ticated syntax highlighting capabilities (currently implemented for C/C++/Java,
Scheme/Elisp and XML) it is also a good choice for writing articles or technical
white papers which contain source code examples.

1 Some words on Literate Programming

This section will discuss some general aspects of literate programming and give a his-
torical overview of the existing program documentation systems known to the author.
Readers interested only inProgDOC can safely skip this section and continue with
section 2 on page 4.

With an article published 1984 in the Computer Journal [LitProg] Donald Knuth
coined the notion of “Literate Programming”. Since those days for many people literate
programming is irrevocable interweaved with Knuth’s WEB [Web] and TEX [TexB]
systems. And many people refuse literate programming solely because they refuse
TEX or WEB.

Knuth justifies the term “literate programming” in [LitProg] with his belief that “..
the time is ripe for significantly better documentation of programs, and that we can
best achieve this by considering programs to be works of literature.” To support this
programming style, he introduced the WEB system which is in fact both a language and
a suite of utilities. In WEB, the program source code and the documentation are written
together into one source file, delimited by special control sequences. The program
source can be split into arbitrary chunks which can be presented in arbitrary order. The
tangle program extracts these code chunks from the WEB file and assembles them in
the right order into a valid source file. Another program calledweave combines the
documentation parts of the WEB files with pretty printed versions of the code chunks
into a file which thereupon can be processed by TEX.

1

1.1. WEBAND ITS DESCENDANTS 2

This system has many advantages. First of all, it fulfills the “one source” property.
Because source code and documentation reside in one file, they are always consistent
with each other. Second, the programmer is free to present the code he writes in arbi-
trary order. Usually, he will present the code in a manner more suitable for a human
reader to understand the program. This can be done by rearranging code chunks, but
also by using macros inside the code chunks, which can be defined later on in the
WEB file. This way a top-down development approach can be achieved, in which the
the structure of a program as a whole is presented in the beginning and then subse-
quently refined.tangle will expand these macros at the right place when constructing
the source file out of the WEB file.

Another feature of the WEB system is the automatic construction of exhaustive in-
dexes and cross references byweave. Every code chunk is accompanied by references
which link it to all other chunks which reference or use it. Also an index of keywords
with respect to code chunks is created and the source code is pretty printed for the doc-
umentation part. The best way to convince yourself of WEB’s capabilities is to have
a look at Knuth’s TEX implementation [Tex]. It was entirely written in WEB and is
undoubtful a masterpiece of publishing and literate programming.

1.1 WEB and its descendants

Besides its many advantages, the WEB system also has a bunch of serious drawbacks.
Many of them apply only to the original WEB implementation of Knuth and have been
corrected or worked around in numerous WEB clones implemented thereafter. In this
section I will present some of them1 and discuss their enhancements.

One of the biggest disadvantages of WEB was the fact that it was so closely tied
to TEX as typesetting system and to Pascal as implementation language. So one of
the first flavors of WEB was CWEB [CWeb] which extended WEB to C as imple-
mentation language. It was implemented by Knuth himself together with Silvio Levy.
CWEBx[CWebx] is a CWEB with some extensions by Marc van Leeuwen. CWEB
suffers from the same problems like WEB, it is closely coupled to TEX and the C pro-
gramming language.

To overcome this language dependencies, noWEB[noWeb] (which evolved from spi-
derWEB) and nuWEB[nuWeb] have been developed by Norman Ramsey and Preston
Briggs respectively. They are both language independent concerning the programming
language whereas they still use LATEX for typesetting. nuWEB is a rather minimalistic
but fast WEB approach with only as few as four control sequences. Both noWEB and
nuWEB offer no pretty printing by default but noWEB is based on a system of tools
(called filters) which are connected through pipes and the current version comes with
pretty printing filters for C and Java (see the actual documentation).

Another descendant of an early version of cWEB is fWEB [fWeb]. fWEB initially
was an abbreviation for “Fortran WEB”, but meanwhile fWEB supports not only For-
tran, but C, C++, Ratfor and TEX as well. This languages can be intermixed in one
project, while fWEB still supports pretty printing for the different languages. On the
other hand, fWEB is a rather complex piece of software with a 140 page users manual.

Ross Williams’ funnelWEB [funnelWeb] and Uwe Kreppels webWEB [webWeb]
are not only independent of the programming language, but of the typesetting language

1I will mention here only systems which I know. If you want a more complete overview have a look
at the Comprehensive TEXArchive Network (CTAN) under http://www.ctan.org/tex-archive/web or visit
http://www.literateprogramming.org

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

3 1.2. General drawbacks of WEB based literate programming tools

as well. They define own format macros, which can be bound to arbitrary typesetting
commands. As of now, they both come with HTML and LATEX bindings respectively.

1.2 General drawbacks of WEB based literate programming tools

Though many of the initial problems of the WEB system have been solved in some of
the clones, their sheer number indicates that none of them is perfect.

One of the most controversial topics in the field of literate programming is pretty
printing. There are two questions here to consider. Do we want pretty printing at all,
and if yes, how should the pretty printed code look like. While for the first question
a rational answer can be found, the second is kind of anp-hard problem of computer
science.

From a practical point of view it must be stated that doing pretty printing is possible
for Pascal, although a look at the WEB sources will tell you that it is not an easy task
to do. Doing it for C is even harder2. Taking into account the fact thatweave usually
processes only a small piece of code, which itself even mustn’t be syntactically correct,
it should be clear that pretty printing this code in a complex language like for example
C++ will be impossible.

To overcome this problems, special tags have been introduced by the various systems
to support the pretty printing routines. But this clutters the program code in the WEB
file and even increases the problem of the documentation looking completely different
than the source. This can be annoying in a develop/run/debug cycle. As a consequence,
the use of pretty printing is discouraged. The only feasible solution could be a simple
syntax highlighting instead of pretty printing, as it is done by many editors nowadays.

Even without pretty printing and additional tags inserted into the program source, the
fact that the source code usually appears rearranged in the WEB file with respect to the
generated source file makes it very hard to extend such a program. A few lines of code
laying closely together in the source file may be split up to completely different places
in the WEB file. Because every WEB system needs at least some control characters,
they must be quoted if used inside the program code. Moreover navigating through a
web file with respect to a given program structure is a hard task because of the splitting
and rearrangement of functions and declarations. But changes definitively must be
applied to the web file, since it is the master copy of all source files. Finally, debugging
a program created from a web file resembles debugging a program compiled without
debugging symbols.

Another serious problem common to WEB systems is their “one source” policy.
While this may help to hold source code and documentation consistent, it breaks many
other development tools like revision control systems and make utilities. Moreover,
it is nearly impossible for a programmer not familiar with a special WEB system to
maintain or extend code devolved with that WEB.

Even the possibility of giving away only the tangled output of a WEB is not attrac-
tive. First of all, it is usually unreadable for humans3 and second this would break
the “one source” philosophy. It seems that most of the literate programming projects
realized until now have been one man projects. There is only one paper from Ram-
sey and Marceau[RamMarc] which documents the use of literate programming tools

2The biggest part of CWEB consists of the pretty printing module. Recognition of keywords, identifiers,
comments, etc. is done by a hard coded shift/reduce bottom up parser

3nuWEB is an exception here, since it forwards source code into the tangled output without changing its
format

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

1.3. NEW PROGRAM DOCUMENTATION SYSTEM 4

in a team project. Additionally, some references can be found about the use of literate
programming for educational purpose (see [Childs] and [ShumCook]).

The general impression confirms Van Wyk’s observation[VanWyk] “.. that one must
write one’s own system before one can write a literate program, and that makes [him]
wonder how widespread literate programming is or will ever become.” The question he
leaves to the reader is whether programmers are in general to individual to use some-
body else’s tools or if only individual programmers develop and use (their own) literate
programming systems. I think the question is somewhere in between. Programmers are
usually very individual and conservative concerning their programming environment.
There must be superior tools available to let them switch to a new environment.

On the other hand, integrated development environments (IDEs) evolved strongly
during the last years and they now offer sophisticated navigation, syntax highlighting
and online help capabilities for free, thus making many of the features of a WEB sys-
tem, like indexing, cross referencing and pretty printing become obsolete. Last but
not least the will to write documentation in a formatting language like TEX or LATEX
using a simple text editor is constantly decreasing in the presence of WYSIWYG word
processors.

1.3 New program documentation system

With the widespread use of Java a new program documentation system called JavaDoc
was introduced. JavaDoc [JDoc] comes with the Java development kit and is thus avail-
able for free to every Java programmer. The idea behind JavaDoc is quit different from
that of WEB, though it is based on the “one source” paradigm as well. JavaDoc is a
tool which extracts documentation from Java source files and produces nicely format-
ted HTML output. Consequently, JavaDoc is tied to Java as programming and HTML
as typesetting language. By default JavaDoc parses Java source files and generates a
document which contains the signatures of all public and protected classes, interfaces,
methods and fields. This documentation can be further extended through specially
formatted comments which may contain HTML tags.

Because JavaDoc is available only for Java, Roland Wunderling and Malte Zöckler
created DOC++ [DOCpp], a tool similar to JavaDoc but for C++ as programming lan-
guage. Additionally to HTML, DOC++ can create LATEX formatted documentation
as well. Doxygen by Dimitri van Heesch [Doxygen], which was initially inspired by
DOC++, is currently the most ambitious tool of this type which can also produce output
in RTF, PDF and Unix man-page format. Both, DOC++ and Doxygen can create a va-
riety of dependency-, call-, inclusion- and inheritance graphs, which may be included
into the documentation.

These new documentation tools are mainly useful to create hierarchical, browesable
HTML documentations of class libraries and APIs. They are intended for interface de-
scription rather than the description of algorithms or implementation details. Although
some of them support LATEX, RTF or PDF output, they are not best suited for generating
printed documentation.

2 Overview of theProgDOC system

With this historical background in mind,ProgDOC takes a completely different ap-
proach. It releases the “one source” policy, which was so crucial for all WEB systems,

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

5 2. Overview of theProgDOC system

thus giving the programmer maximum freedom to arrange his source files in any desir-
able way. On the other hand, the consistency between source code and documentation
is preserved by special handles, which are present in the source files as ordinary com-
ments4 and which can be referenced in the documentation.pdweave, ProgDOC’s weave
utility incorporates the desired code parts into the documentation.

But let’s first of all start with an example. Suppose we have a C++ header file called
ClassDefs.h which contains some class declarations. Subsequent you can see a verba-
tim copy of the file :

class Example1 {
private :

int x;
public :

explicit Example1(int i) : x(i) {}
};

class Example2 {
private :

double y;
public :

explicit Example2(double d) : y(d) {}
explicit Example2(int i) : y(i) {}
explicit Example2(long i) : y(l) {}
explicit Example2(char c) : y((unsigned int)c) {}

};

It is common practice until now, especially among programmers not familiar with any
literate programming tools, that system documentations contain such verbatim parts
of the source code they want to explain. The problem with this approach is the code
duplication which results from copying the code from the source files and pasting it
into the text processing system. From now on every change in the source files has to
be repeated in the documentation. This is reasonable of course, but the practice tells us
that the discipline among programmers to keep their documentation and their source
code up to date is not very high.

At this point, theProgDOC system enters the scene. It allows us to writeClass-
Defs.h as follows :

// BEGIN Example1
class Example1 {
private :

int x; // Integer variable
public :

explicit Example1(int i) : x(i) {} // The constructor
};
// END Example1

// BEGIN Example2
class Example2 {
// ...
private :

double y;

4As far as I know, any computer language offers comments, so this seems to be no real limitation.

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

2. OVERVIEW OF THEProgDOC SYSTEM 6

// ...
public :

explicit Example1(double d) : y(d) {}
explicit Example2(int i) : y(i) {}
explicit Example2(long i) : y(l) {}
explicit Example2(char c) : y((unsigned int)c) {}

};
// END Example2

The only changes introduced so far are the comments at the beginning and at the end of
each class declaration. These comments, which of course are non-effective for the
source code, enable us to use the new\sourceinput[options]{filename}{tagname}
command in the LATEX documentation. This will results in the inclusion and syntax
highlighting of the source code lines which are enclosed by the “// BEGIN tagname”
and “// END tagname” lines respectively. Consequently the following LATEX code:

‘‘.. next we present the declaration of the class {\mytt Example1}:

\sourceinput[fontname=blg, fontsize=8, listing, linenr,
label=Example1]{ClassDefs.h}{Example1}

as you can see, there is no magic at all using the {\mytt \symbol{92}sourceinput}
command ..’’

will result in the following output:

“.. next we present the declaration of the classExample1:

Listing 1: ClassDefs.h[Line 2 to 7]

class Example1 {

private :

int x; // Integer variable

public :

explicit Example1(int i) : x(i) {} // The constructor

};

as you can see, there is no magic at all using the\sourceinput command ..”

First of all, we observe that the source code appears nicely highlighted, while its
indentation is preserved. Second, the source code is preceded by a caption line similar
to the one known from figures and tables. In addition to a running number, the caption
also contains the file name and the line numbers of the included code. Furthermore this
code sequence can be referenced everywhere in the text through a usual\ref command
(like for example here: see Listing 1). Notice however that the boxes shown here are
used for demonstrational purpose only and are not produced by theProgDOC system.

After we got an impression of howProgDOC’s output looks like, it’s time to explain
the way how it is produced. First of all the style file ’progdoc.sty’ has to be included
into the latex source file. Among some definitions and default settings (see section 9)
’progdoc.sty’ contains an empty definition of\sourceinput. If LATEX will process any
file with this command, it will only print out the following warning:

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

7 3. The\sourceinput command

WARNING !!! Run pdweave on this file before processing it with LATEX. Then you
will see the sourcecode example labeledExample1 from the fileClassDefs.h instead
of this message.

There are two main reasons for this behavior. The first and main one is that I’m
an awful LATEX “speaker” and thus unable to implement all this functionality in pure
TEX/LATEX. The second reason is that there already are a lot of useful tools around there
in the Web, so why not combine and use them as shown in Figure 1.

.pd
file

.java
file

file
.tex

.cpp
file file

.xml

pdweave

pdhighlight pdhighlight pdhighlight

latex

pdflatex

latex2html

.dvi
file

file
.pdf

file
.html

Figure 1: Overview of theProgDOC system.

In fact theProgDOC system consists of two parts:pdweave andpdhighlight where
pdweave is an AWK script whilepdhighlight is a heavily modified, extended and re-
named version of Norbert Kiesel’sc++2latex filter. The production of HTML is done
by Nikos Drakos’ and Ross Moore’slatex2html [La2HT] utility.

The main idea behindProgDOC is to write the documentation into so called ’.pd’
files which contain pure LATEX code and, as an extension to ordinary LATEX, some ad-
ditional commands like the above mentioned\sourceinput. These ’.pd’ files are pro-
cessed bypdweave which extracts the desired parts out of the source files, highlights
them and finally merges them with the ordinary parts of the documentation. The file
generated this way is an usual LATEX source file which in turn can be passed to the LATEX
text processor.

Usually, all this steps are simplified by the use of a specialMakefile which also keeps
track of dependencies between source files and the documentation itself (see section 10
for an example).

In the next sections a brief description of the different commands available in ’.pd’
files will be given. The format of the handles required in the source files will be ex-
plained and finally an exampleMakefile which automates the generation of the pro-
gram documentation will be presented.

3 The\sourceinput command

Now that we have an idea of the general mechanism of theProgDOC system, let’s
have a closer look on the\sourceinput command. Its syntax is similar to that of other
LATEX commands though, as we know by now, it will be normally processed bypdweave
and not by LATEX. The general form of the command is:

\sourceinput[options]{filename}{tagname}

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

3. THE \sourceinput COMMAND 8

Like in LATEX, arguments in{}-brackets are required whereas the ones in[]-brackets
are optional.

\sourceinput Arguments

filename Absolute or relative pathname of the source file. This
may be internally preceded by a base path if the command
\sourceinputbase{filename} (see section 7) has been used.

tagname This is an arbitrary string which uniquely identifies a part
of source code in the file specified byfilename. A special
tagname“ALL” is available, which includes a whole file.
(See section 8 for a detailed description of the comment
format in the source files).

\sourceinput Options

label=name An ordinary LATEX label name which will be declared in-
side of the produced source listing and which can be used
subsequently as parameter for the\ref command.

fontname=name The name of the base font used for highlighting the source
listing. It is desirable here to specify a mono spaced font
of which italic, bold and bold italic versions exist, since
they are used to emphasize keywords, comments, string
constants and so on5. (The default is the initial setting for
\ttdefault, usuallycmtt)

fontenc=encoding The encoding of the font chosen with thefontnameoption
above. (The default is OT1.)

fontsize=pt The fontsize in point used for highlighting the listings.
Since mono spaced fonts are usually some wider compared
to proportional counterparts, a somewhat smaller size is
recommended here. (The default is 8pt.)

linesep=length The line separation used for the source listings. (The de-
fault is 2.5ex.)

type=language This option controls the type of language assumed for the
source file. Thelanguageargument will be handed over
to the actual highlighter (see the optionhighlighter). Cur-
rently the default highlighterpdhighlight supports the val-
uesc, cpp, java, xml, scm, el or text. If not set, the default
language iscpp. If type is set totextno syntax highlighting
will be done at all.
Notice that this option also affects the way in which com-
ments are recognized in the source files (see also the option
commentand chapter 8 about the source file format 8 on
page 12).

comment=’string’ If you use one of the supported languages listed in the table
on page 12, the tag names will be recognized automatically.
If you however include parts of a file in an unsupported lan-
guage, it may be necessary to set the string which denotes
the beginning a comment in that language with this option.

tab=value The value oftab indicates the number of space characters
used to replace a tab character (’\t’). The dafault is 8.

5For more information on choosing the right base font see section B.7 on page 23

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

9 3. The\sourceinput command

\sourceinput Options

listing[=noUnderline] If the listing option is present, a heading will be printed
above the listing, which contains at least the running num-
ber of the listing and the name of the file it was extracted
from. By default, this heading will be underlined. You can
change this behavior by using the optionalnoUnderline ar-
gument

linenr If the linenr option is set, the heading additionally will con-
tain the line numbers of the code fragment in its source file.
The specialtagname“ALL” always turns line numbers off.

center With this option set, the listing will appear centered, with-
out it will be left justified.

underline If this option is set,pdhighlight will underline keywords
instead of setting them in bold face. This is useful for fonts
for which there exists no bold version (e.g.cmtt).

caption=’captiontext’ If this option is set, then the caption produced by thelisting
option will containcaptiontextinstead of the file name and
possibly the line numbers. Notice thatcaptiontextmust be
enclosed between apostrophe signs “ ’ ”.

wrap=column With this option, you can instructpdweave to wrap the lines
of the source code you include at the specifiedcolumn.
pdweave uses a heuristics in order to find a “good” break
position, so the column argument supplied withcolumnis
just a maximum value which will be not exceeded. Lines
broken bypdweave, will be marked by an arrow (“←↩”) at
the breaking point. This option is especially useful in two-
column mode. For en example see the Listings 10 to 14 on
page 24.

highlighter=program This option controls which program is used to highlight the
source code. The default highlighter ispdhighlight. Cur-
rently the only additional highlighter ispdlsthighlight.
Refer to section 5 for further information.

useLongtable
DEPRECATED

This is a compatibility option which forces the default
highlighterpdhighlight to arrange the source listings in a
longtable environment. Because of layout problems which
resulted from the interaction of longtables with other float
objects, the use of the longtable environment has been
abandoned. This option is only for people who want to
typeset a document in exactly the same way it was done
with older versions ofProgDOC.

Apart from whitespace, the\sourceinput command must be the first to appear in a
line and it must end in a line of its own. However the command itself can be split over
up to five different lines. (This number can be adjusted by setting the variableDELTA
in the scriptpdweave.awk.). It may also be necessary to quote some option arguments
between apostrophe signs “ ’ ”, if they contain white space or special characters like
angle or curly brackets.

Some of this options likefontnameor fontsizecan be redefined globally in the ’.pd’
file. See section 9 on page 15 for more information.

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

4. USING ProgDOC IN TWO-COLUMN MODE 10

4 UsingProgDOC in two-column mode

Starting with version 1.3,ProgDOC can be used in the LATEX two-column or multicol-
umn mode. However some restrictions apply in these modes which will be discussed
here. We will switch now to two-column mode by using the multicols environment
with the command\begin{multicols}{2}:

First of all, there is no two-column
support when using the deprecateduse-
Longtableoption, because the longtable
environment doesn’t work in the two-
column mode.

Otherwise, the two-column mode set
with the twocolumn option of the docu-
mentclass command or inside the doc-
ument with the\twocolumn command is
supported as well as the two- or multicol-
umn mode of themulticols environment
(see [multicol]), however with some mi-
nor differences.

Listing 2: A shortPython example

#

QuickSort and Greatest Common Divisor

Author: Michael Neumann

#

<see Listing 3 on page 10>

<see Listing 4 on page 11>

print "Hello World"

print quicksort([5,99,2,45,12,234,29,0])

Because of incompatibilities between the
multicols environment and theafter-
page package, the caption “Listing x: ...
(continued)” on subsequent columns or
pages is not supported for listings inside
themulticols environment (as can be seen
in Listing 2 to 4 which are printed inside
a multicols environment). If intwocol-
umn mode, columns are treated like pages
for the caption mechanism ofProgDOC
(see section C for an example printed in
twocolumn mode). Therefore the “Listing
x: ... (continued)” captions are repeated
on the top of each new column the listings
spans on, just as if it was a new page.

5 Using the alternative highlighterpdlsthighlight

In addition to the default highlighter
pdhighlight ProgDOC comes now with
an additional highlighter calledpdl-
sthighlight which is in fact a wrapper
for the listings environment of Carsten
Heinz (see [listings]).

Listing 3: test.py[Line 8 to 12]
(Referenced inListing 2 on page10)

def ggd(a, b):

if a < b: a,b = b,a

while a%b != 0:

a,b = b,a%b

return b

To use this highlighter thelistings.sty
package has to be installed and manually
loaded into the document with\usepack-

age{listings}. The Listings 2 to 4 are
typeset usingpdlsthighlight with the
following options: [linenr, listing,
wrap=40, fontname=blg, highlighter=
’pdlsthighlight’, type=Python].

pdlsthighlight also works in both,
single and two-column mode, however
it doesn’t support the “Listing x: ...
(continued)” captions at all. The bene-
fits of the new highlighter are the many
supported language for which thelist-
ings package performs syntax highlight-
ing. One of the main drawbacks is
the fact that you can not produce an
HTML version of the document because
LATEX2HTML doesn’t support the pack-
age.

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

11 6. The\sourcebegin and\sourceend commands

Notice furthermore that you have to set
the typeoption of the\sourceinput com-
mand to a value recognized by thelist-
ings environment if you usepdlsthigh-
light as highlighter (e.g.type=C++ in-
stead oftype=cpp). Refer to [listings] for
a complete list of supported languages.

Listing 4: test.py[Line 16 to 21]
(Referenced inListing 2 on page10)

def quicksort(arr):

if len(arr) <= 1: return arr

m = arr[0]

return quicksort(filter(lambda i,j=m: ←↩

i<j, arr)) + \

filter(lambda i,j=m: i==j, ←↩

arr) + \

quicksort(filter(lambda i,j=m: ←↩

i>j, arr))

In this context it may also be necessary
to use thecommentoption to specify the
comment characters of a language not
known topdweave.

6 The\sourcebegin and \sourceend commands

Beneath the\sourceinput command there exists another pair of commands, which can
be used to highlight source code written directly into the ’.pd’ file. Of course they are
pseudo LATEX commands as well and will be processed by thepdweave utility rather
than by LATEX. Their syntax is as follows:

\sourcebegin[options]{ header}
source code
\sourceend

The\sourcebegin command has the same options like the\sourceinput command, but
no filenameandtagnameoptions, since the source code begins in the line that follows
the command. For compatibility reasons with olderProgDOC versions there is an
optionalheaderargument. It will be printed instead of the filename in the header of
the listing if the optionlisting is set. The recommendation for new users however is to
use thecaptionoption instead. Notice that in contrast to the usual LATEX conventions,
this is an optional argument. The source code will be terminated by a line which solely
contains the\sourceend command.

This commands are useful if some code must be presented in the documentation
which is not intended to appear in the real source code. Consider for example the
following code:

.. we don’t use void pointers and ellipsis for our function {\mytt func}

\sourcebegin[fontname=blg, fontsize=8, listing, center]{Just an example ..}
void func(void *p, ...) {

cout << "A function with an arbitrary number of arguments\n";
..

}
\sourceend

since they are bad programming style and can lead to unpredictable errors ..

which will result in the following output:

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

7. THE \sourceinputbase COMMAND 12

“.. we don’t use void pointers and ellipsis for our functionfunc

Listing 5: Justanexample..

void func(void *p, ...) {

cout << "A function with an arbitrary number of arguments\n";

..

}

since they are bad programming style and can lead to unpredictable errors ..”

The same restrictions that apply for the\sourceinput command hold good for\source-
begin and\sourceend as well. Additionally, if present, the opening brace of the optional
headerargument must start in the same line like the closing bracket of theoptionsar-
gument.

7 The\sourceinputbase command

If you want to present to the reader a certain view of the source code, relative and
absolute path names may be not enough for the\sourceinput command. In this case
you can use the command:

\sourceinputbase{pathname}

It defines a global path prefix for all\sourceinput commands which follow in the same
file. You can reset this path prefix by calling\sourceinputbase{} with a zero length
argument. Like the\sourceinput command, the\sourceinputbase command must be
in its own line and may be preceded only by whitespace. This command has file scope.

Notice that automatic references between nested code sequences (see section 8.2)
will work only if the code sequences have been included with the same path prefix.
This is because of the algorithm which automatically generates the labels for nested
code sequences. It uses the pathname of the file from which a code sequence has been
included as a part of the generated label name.

8 The source file format

As shown in the first section, arbitrary parts of a source file can be made available to
ProgDOC by enclosing them with comment lines of the form ’// BEGIN tagname’ and
’// END tagname’ respectively where in this and the following examples we will use the
C++ comment syntax. HoweverProgDOC also supports a number of other languages.

When speaking about supported languages, one has to distinguish between highlight-
ing support for a language which comes frompdhighlight and the support to extract
code snippets out of files of a given language, which is provided bypdweave. The fol-
lowing table lists the supported languages with respect to both these tools. In general,
any file may be used as input source, even if not listed here, by specifying “text” as
typeargument and the corresponding comment character(s) ascommentargument to
the\sourceinput command (see table on page 8).

type Language Comment character(s) pdweave pdhighlight

c C // , /∗
√ √

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

13 8.1. Hiding code parts

type Language Comment character(s) pdweave pdhighlight

cpp C++ // , /∗
√ √

java Java // , /∗
√ √

xml XML <!−−
√ √

scm Scheme ; , ;; , ;;; , ;;;;
√ √

el ELisp ; , ;; , ;;; , ;;;;
√ √

vb VisualBasic ’
√

−
py Python #

√
−

text Text # , // , -
√

−

8.1 Hiding code parts

An arbitrary even number of ’// ...’ comments may appear inside a ’BEGIN/END’ code
block. All the code between two of these comment lines will be skipped in the output
and replaced by a single “dotted line” (...). This is useful for example, if you want to
show the source code of a class, but don’t want to bother the reader with all the private
class stuff.

Recall the header file from section 2, which will be reprinted here for convenience,
by using the following command: “\sourceinput[fontname=blg, fontsize=8, list-
ing]{ClassDefs.h}{ALL} ”. Notice the use of the special tag name “ALL”, which in-
cludes a source file as a whole.

Listing 6: ClassDefs.h

// BEGIN Example1

class Example1 {

private :

int x; // Integer variable

public :

explicit Example1(int i) : x(i) {} // The constructor

};

// END Example1

// BEGIN Example2

class Example2 {

// ...

private :

double y;

// ...

public :

// BEGIN Constructors

explicit Example2(double d) : y(d) {}

explicit Example2(int i) : y(i) {}

explicit Example2(long l) : y(l) {}

explicit Example2(char c) : y((unsigned int)c) {}

// END Constructors

void doSomething(); // do something

};

// END Example2

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

8.1. HIDING CODE PARTS 14

In the way described until now we can include the class definition of the class “Ex-
ample2” by issuing the command: “\sourceinput[fontname=ul9, fontenc=T1, font-
size=7, listing, linenr, label=Example2]{ClassDefs.h}{Example2}”.

Listing 7: ClassDefs.h[Line 11 to 24]

class Example2 {

...

public :

<see Listing 8 on page 14>

void doSomething(); // do something

};

As you can see however, the private part of the class definition is replaced by the
mentioned “dotted line” which stands for as much as “there is some hidden code at this
position in the file, but this code is not important in the actual context”.

8.2 Displaying nested code sequences

Another possibility of hiding code at a specific level, is to nest several “BEGIN/END”
blocks. If a “BEGIN/END” block appears inside another block, then he will be replaced
by a single line of the form “<see Listing xxx on page yyy>”. xxx denotes the listing
number in which the code of the nested block actually appears andyyy the page number
on which that listing begins. Of course this is only possible, if the mentioned nested
block will be or already has been included by a\sourceinput command.

In turn, if a nested block will be included through a\sourceinput command, his
heading line will additionally contain the listing and page number of his enclosing
block. You can see this behavior in the following example where we show the construc-
tors of the classExample2 by issuing the following command: “\sourceinput[fontname=
ul9, fontenc=T1, fontsize=7, listing, linenr, label=Constructors]{ClassDefs.h}
{Constructors}”.

Listing 8: ClassDefs.h[Line 18 to 21] (Referenced inListing 7 on page14)

explicit Example2(double d) : y(d) {}

explicit Example2(int i) : y(i) {}

explicit Example2(long l) : y(l) {}

explicit Example2(char c) : y((unsigned int)c) {}

So lets finally state more precisely the difference between hiding code through ’// ...’
comment lines and the nesting of code blocks. While ’// ...’ comments always match
the following ’// ...’ line, a nested ’BEGIN tagname’ always matches its correspondent
’END tagname’ and can potentially contain many ’// ...’ lines or even other nested
chunks. Another difference is the fact that nested chunks can be presented later on in
the documentation and will be linked together by references in that case , while parts
masked out by ’// ...’ lines will simply be ignored. Nevertheless, ’// ...’ lines can
be useful for example if a part of a source file contains many lines of comments which
aren’t intended to be shown in theProgDOC documentation. If you want to use nested
“BEGIN/END” chunks together with the\sourceinputbase command, be sure to read the
comments on this topic in section 7.

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

15 9. LATEX customization ofProgDOC

One last word on the format of the comments processed by theProgDOC system.
They must be in a line on their own. The comment token,BEGIN/END and the tagname
must be separated by and only by whitespace. The comment token must not necessarily
begin in the first column of the line as long as it is preceded only by whitespace. The
tagname should consist only of characters which are valid in a LATEX \label statement.

9 LATEX customization ofProgDOC
Some of the options available for the ’\sourcebegin’ and the ’\sourceinput’ command
(see section 3 on page 7) can be set globally by redefining LATEX commands. Additional
commands can be used to adjust the appearance of the generated output even further.
Following a list of the available commands:

\pdFontSize The font size used for printing source listings. The default is 8pt.
This command is the global counterpart of thefontsizeoption of
’\sourcebegin’ and ’\sourceinput’.

\pdLineSep The line separation used for printing source listings. The default
is 2.5ex. This command is the global counterpart of thelinesep
option of ’\sourcebegin’ and ’\sourceinput’.

\pdBaseFont The font family which is used to print source listings. The de-
fault is ’\ttdefault’.This command is the global counterpart of
thefontnameoption of ’\sourcebegin’ and ’\sourceinput’.

\pdFontEnc The encoding of the font family chosen with\pdBaseFont or
with the fontnameoption of the ’\sourcebegin’ or ’ \sourcein-
put’ commands. The default is OT1. This command is the global
counterpart of thefontencoption of ’\sourcebegin’ and ’\sour-
ceinput’.

\pdCommentFont The font shape used for highlighting comments in the source
listing. The default setting is ’\itshape’.

\pdKeywordFont The font shape used to highlight the key words of a program-
ming language. The default is ’\bfseries’.

\pdPreprFont The font shape used to highlight preprocessor commands in C
or C++. The default is ’\bfseries\itshape’.

\pdStringFont The font used to highlight string constants in source listings. The
default setting is ’\slshape’.

\ProgDoc Command to print theProgDOC logo.
\pdULdepth This is a length command which controls the depth of the

line under a listing caption. ProgDOC uses theulem.sty
package for underlining which does a pretty good job in
guessing a reasonable value for this purpose. However it
may sometimes be necessary to manually fine tune it, de-
pending on the used font. The length may be set with the
\setlength command. Resetting\pdULdepth to 0pt reactivates
the initial ulem.sty algorithm. (This tutorial for example uses
\setlength{\pdULdepth}{2.5pt}.)

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

9. LATEX CUSTOMIZATION OFProgDOC 16

\pdPre6

DEPRECATED

This and the following three length commands correspond to
the longtable commands\LTpre, \LTpost, \LTleft and\LTright
respectively. For more information see the documentation of the
longtable package [longtable].\pdPre sets the amount of space
before a listing. The default is\bigskipamount.

\pdPost6

DEPRECATED

\pdPost sets the amount of space after a listing. The default is
0cm.

\pdRight6

DEPRECATED

The margin at the right side of the listing. The default is\fill.

\pdLeft6

DEPRECATED

\pdLeft sets the amount of space at the left side of a listing. Usu-
ally the listing is left justified or centered (see also section 3, The
\sourceinput command). But because listings are typeset inside
a longtable environment, they aren’t indented for example inside
list environments. In that case it can be useful to set\pdLeft
to \leftmargin. If the listing will be insight a nested list envi-
ronment, you can use\renewcommand{\pdLeft}{x\leftmargin}
wherex is the nesting level. The default is0cm.

All these commands can be redefined. If you want to typeset string constants in
italic, you could insert the following line in the preamble of your ’.pd’ file: ’ \renew-
command{\pdStringFont}{\slshape}’.

The words used to built up the header of each listing can be set by the user according
to his preferences (though this is intended mainly to permit a certain kind of localiza-
tion). They are defined in ’progdoc.sty’ as follows:

\ListingName The name used to name listings. The default is “Listing”.
\LineName The name of a line. The default setting is “Line”.
\toName The word for “to” in “Line xxx to yyy”. Defaults to “to”.
\ReferenceName The sentence “Referenced in”.
\PageName The words “on page”.
\ListingContinue A word to indicate that the current listing is a continuation

from a previous page. Defaults to “continued”.
\NextPage6

DEPRECATED

This should be a small symbol to indicate that a listing is not
finished, but will be continued on the next page. The default
setting is ’\ding{229}’ which is the ’➥’ symbol.

You could customize these entries for the german language by inserting the following
lines into the preamble of your ’.pd’ file:

\def\LineName{Zeile}
\def\toName{bis}
\def\ReferenceName{Referenziert in}
\def\PageName{auf Seite}
\def\ListingContinue{Fortsetzung}

6BecauseProgDOC internally used the longtable environment in older versions to render the program
listing, some of the longtable options have been made available toProgDOC users. As new versions of
ProgDOC don’t use longtable anymore, this options have no effect. (See theuseLongtableoption of the
\sourceinput command on page 1 for a compatibility option to enable the old style mode which uses
the longtable environment).

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

17 10. An exampleMakefile

10 An exampleMakefile

In this chapter a makefile will be presented which simplifies the task of calling all the
scripts in the right order and keeps track of dependencies between source and documen-
tation files. For the sake of simplicity, the makefile used to build this documentation
will be shown:

Listing 9: Makefile

dvi : tutorial.dvi

ps : tutorial.ps

pdf : tutorial.pdf

html : tutorial/tutorial.html

out : example

clean :

rm -rf *.dvi *.ps *.pdf *.log *.aux *.idx *˜ part1.tex tutorial.tex \

*pk *.out pdweave.tmp pd html.html tutorial

tutorial.dvi : tutorial.tex part1.tex

tutorial.pdf : tutorial.tex part1.tex progdoc.pdf

progdoc.pdf : progdoc.eps

epstopdf progdoc.eps

part1.tex : ClassDefs.h test.xml test.py version.el

example : example.cpp ClassDefs.h

g++ -o example example.cpp

tutorial/tutorial.html: tutorial.dvi

latex2html -html version 4.0 -show section numbers -image type gif \

-up title "ProgDoc Home Page" -up url "../progdoc.htm" \

-no footnode -local icons -numbered footnotes tutorial.tex

We generate ps from pdf now in order to depend only on pdfLaTeX!

%.ps : %.dvi

dvips -D 600 -o $@ $<

%.ps : %.pdf

acroread -toPostScript -binary $<

%.dvi : %.tex

latex $< && latex $<

%.pdf : %.tex

rm -f $*.aux && pdflatex $< && pdflatex $<

%.tex : %.pd

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

10. AN EXAMPLE Makefile 18

Listing 9: Makefile(continued)

pdweave $<

Of course this file can be included with the\sourceinput command as well. Because
syntax highlighting for makefiles is not supported yet, the file was included by using
the typeoption set totext. But even in this case, there are still benefits in using the
\sourceinput command. First of all, the documentation will always contain the actual
makefile. Second, this makefile can be referenced throughout the documentation like
every other source file (see Listing 9). And last but not least,ProgDOC may be ex-
tended in the future to highlight various other file formats, so you may improve your
documentation by simply rebuilding it with a new version ofProgDOC.

Now lets have a closer look on the makefile. The first five lines define shortcuts for
the different targets, namely thedvi, ps, pdf andhtml versions of the documentation
and theexample executable.clean, the last target removes all files created during a build
process. Notice that ’pdweave.tmp’ and ’ pd html.html are temporary files created by
pdweave.

In the next lines, the dependencies are defined. Thedvi output depends on thetex
files of the documentation which in turn depend on the source code of the files they
document. Therefore the documentation will be rebuild not only if the documentation
source files will change, but also if the source code files change.

The next two rules tell make utility how to build theexample executable and the
html version of the documentation. The latter will be created by LATEX2HTMLin its own
subdirectory.

The last four parts of the makefile contain generic actions which tell the make utility
how to generate ’.ps’ files out of ’.dvi’ files, ’.dvi’ files out of ’.tex’, ’ .pdf’ files out
of ’.tex’ files and finally ’.tex’ files out of .pd-files. As you can see, for the last step
thepdweave utility will be used.

Using this example as skeleton, it should be straightforward how to write makefiles
for your own projects.

11 Acknowledgements

I want to thank all the users who usedProgDOC and supplied feedback information to
me. Among others these are Martin Gasbichler, Blair Hall and Roland Weiss. Finally
I’m truly indebted to Holger Gast, who always answered patiently all my questions
and solved most of my problems concerning TEX which beneath all its strengths is a
terrible programming language.

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

19 A.3. InstallingProgDOC

A Installing ProgDOC
To installProgDOC get the latest version. Currently there are binary versions avail-
able for Linux (ProgDoc x.y linux.tgz) Windows (ProgDoc x.y win32.tgz) and various
other Unix versions (have a look at theProgDOC home page at [progDoc]). If you use
another system you must get the source distributionProgDoc x.y src.tgz where (x and
y denote the major and minor version number) and compile it yourself.

A.1 Requirements

In order to use theProgDOC system you need a runningawk interpreter. If you want
to produce HTML output, you need LATEX2HTML. Additionally, amake utility is recom-
mended but not needed. If you want to compile the source code, you needflex, the
GNU version of the lexical analyzer generatorlex, an ANSI C compiler andmake.

The binary version for Windows as well as the source distribution contain win32 ex-
ecutables ofawk, flex andmake, whereas Unix systems have them by default. The latest
version of LATEX2HTML can be obtained from [La2HT].ProgDOC 1.0 was tested with
LATEX2HTML 99.2beta5 and beta6. Older versions may have some problems processing
ProgDOC’s output. Therefore using the LATEX2HTML version which can be found on
theProgDOC home page is recommended.

A.2 Compiling ProgDOC
If you have a binary distribution, you can skip this section. Unpack the source dis-
tribution. If you work on a Windows systems be sure to copy the files located in the
’win32bin/’ directory of the distribution to a location covered by yourPATH environ-
ment variable. Then enter the ’src/’ directory and typemake. This should callflex
which createspdhighlight.c out of pdhighlight.l. Then the C/C++ compiler(s) will
compile all the C/C++-files and produce the executablespdhighlight andpdlsthigh-
light in the ’bin/’ directory. On Windows platforms you must execute ’make -f Make-
file.win’ in the ’src/’ directory which will result in the creation ofpdhighlight.exe
andpdlsthighlight.exe in the ’bin/’ directory.

Notice: pdhighlight uses the GNUgetopt library to parse its command line argu-
ments. Because this library is not standard on all Unix systems,ProgDOC comes with
its owngetopt files. However, in rare circumstances (apparently under some versions
of AIX or BSD), these files can interfere with already installedgetopt files. In this
case, you can either delete thegetopt files which come withProgDOC and use the
ones supplied by the system, or if this doesn’t work, install a new version ofgetopt.

A.3 Installing ProgDOC
Copypdhighlight, pdlsthighlight andpdweave (pdhighlight.exe, pdlsthighlight.exe,
pdweave andpdweave.bat on Windows systems) from the ’bin/’ directory to a directory
which is in the executable path of your system (for example ’/usr/local/bin’ on Unix
systems or ’C:\WINNT\SYSTEM32’ on Windows boxes.) On Windows systems you have
to additionally edit the pathname ofpdweave in the filepdweave.bat to reflect the actual
location of the file.

As last step you have to copy the style files located in the directory ’latex/’ into a
place where they can be found by your LATEX system. The ’latex/’ directory currently
contains two files: ’progdoc.sty’ and ’html.sty’. ’ html.sty’ is only needed in the case

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

A.4. NOTES FORLATEX2HTML USERS 20

you don’t plan to install LATEX2HTML. Otherwise use the ’html.sty’ file which comes
with your LATEX2HTML distribution.

That’s it, you’re done. In order to test your installation, you can enter the ’test/’
directory and typemake at the command prompt. This should build the filetest.dvi. If
you have LATEX2HTML up and running (see section A.4), you can try to saymake html
in order to build the HTML version of the documentation. The page will be generated
in its own subdirectory called ’test/’.

A.4 Notes for LATEX2HTML users

If you want to produce a HTML version of your documentation with LATEX2HTML
you have to copy the file ’.latex2html-init’ from the ’latex2html/’ directory into
your home directory. If you already have your own ’.latex2html-init’ just insert the
marked lines of the provided file into yours. Especially pay attention that the$TEX-
INPUTS variable holds the paths to which you copied theProgDOC style file ’prog-
doc.sty’.

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

21 B.2. Usinghyperref.sty

B Known Problems

In this section solutions for some common problems which can occur during the daily
work with ProgDOC are presented. If this doesn’t solve your problem or even better,
if you already found a solution for a problem not mentioned here, please contact the
author.

B.1 Using pdfLATEX

ProgDOC works fine with pdfLATEX. However there is a problem if using LATEX and
pdfLATEX alternately. This is due to an incompatibility in the format of the auxiliary file
<filename>.aux, which is used by both, LATEX and pdfLATEX to propagate information
from one program run to the next.

Thus executingpdflatex after an execution oflatex will usually result in a bunch
of confusing error messages. The solution of the problem is quite simple: remove the
LATEX generated.aux file every time before executingpdflatex. (This can be automated
for example in a makefile.) Notice that the procedure just described is not necessary if
executinglatex afterpdflatex.

Another problem with pdfLATEX is the fact that you get mangled names in the table of
contents generated by pdfLATEX in the left Acrobat Reader window, if the section titles
contain not pure text, but additionally LATEX commands. This problem has nothing to do
at all withProgDOC, but it is very annoying, especially for beginners. That’s why the
file progdoc.sty contains a redefinition of the pdfLATEX macro\texorpdfstring{<TeX-
String>}{<PDF-String>} which is known to pdfLATEX but not to LATEX. The macro is a
conditional statement for strings. If you use LATEX, the macro evaluates to<TeX-String>.
If you use pdfLATEX the macro evaluates to<PDF-String> in the PDF table of contents
only, but to<TeX-String> in any other case. Thus you can write documents which you
can process with LATEX as well as with pdfLATEX.

B.2 Usinghyperref.sty

Because thehyperref package interacts with many other packages in a subtle and and
often unpredictable way it is a constant source of confusion. In order to minimize
these problems it is strongly recommended to use a reasonable new version ofhyper-
ref.sty. The other important point is to includehyperref.sty “at the right time”. For
theProgDOC tutorial, which is processed by LATEX, pdfLATEX and 2html the following
order of inclusion led to acceptable results:

\usepackage{fancyhdr}
\usepackage{hyperref}
\usepackage{html}
\usepackage{progdoc}
\usepackage{listings}

If you use any other sensitive packages you may figure out the right position for the
inclusion of your package by trying to load it either before or just afterhyperref.sty.

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

B.3. ICONIC REFERENCES IN THEHTML VERSION OF THE DOCUMENTATION 22

B.3 Iconic instead of numeric references
in the HTML version of the documentation

In the HTML version of the documentation generated by LATEX2HTML there are no nu-
meric references (for example in a reference like: see section 5). Instead, the reference
is displayed as a small icon. Although not obvious, this problem is closely related
with the previous one. The reason why this can happen is the fact that LATEX2HTML
doesn’t understand the.aux file generated by pdfLATEX. So in order to get the reference
numbers right execute LATEX before you run LATEX2HTML.

Notice however that references to pages will always be displayed as icons, because
in the HTML version of the document, line numbers simply don’t exist. If you want
to solve this problem, you have to use the conditional statements of LATEX2HTML. See
section 4.5 in the LATEX2HTML manual [La2HT].

B.4 Widow and club lines in listings

- DEPRECATED- (Should only happen with theuseLongtableoption.)

Sometimes it can happen that a listing starts at the end of a page only with the listing
header, but without a single line of the listing. Or it may happen that a listings ends at
the beginning of a page with nothing else but a listing header. These phenomena are
called ’widow line’ and ’club line’ in typography.

There are two things to say about them. First of all, there is no general solution avail-
able, but second, there is a workaround which helps in most of the cases. The problem
is not native toProgDOC, but a problem of the tables generated by thelongtable pack-
age. If you recall, theProgDOC system uses thelongtable environment to lay out the
listings.

The workaround promised above is the following. Don’t care to much about widow
and club lines, until you really finished to write your document. If you finished the
last version and the problem still persists, insert an\enlargethispage{3pt} command
just before or just after the corresponding\sourcebegin environment. Use a positive or
negative length as appropriate. Usually a length of some points should be enough to
avoid the problem.

B.5 Errors during the execution of pdweave

This is most likely a problem of yourawk interpreter.pdweave usesawk features which
have been added by the authors in 1985 in a revised version of their program, which
they callednawk. Since then, most Unix Systems contain thenawk interpreter under the
nameawk. But if pdweave doesn’t work with theawk on your system, then you can try
to replace the first line of thepdweave script with ’#!/usr/bin/nawk -f’, if you have the
nawk interpreter. If this still doesn’t work, you can get the GNU version ofawk which
exists for almost all platforms [gawk]. It is sometimes installed under the namegawk.

B.6 Usingextramarks.sty

ProgDOC should work together with theextramarks.sty package written by Piet van
Oostrum (see [fancyhdr]). However becauseprogdoc.sty redefines some of the macros
in extramarks.sty, progdoc.sty should be included afterextramarks.sty was included
with the\usepackage command.

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

23 B.7. Chosing the right font for source listings

B.7 Chosing the right font for source listings

In order to achive a plaesing source code presentation it is essential to chose the right
font for the source code formatting. Computer programs are traditionally edited by
using mono spaced fonts. Therefore it is desirable to use an monospaced font for
printing as well, in order to conserve the visual layout which the source code had on
the screen.

BecauseProgDOC highlights certain parts of a listing by printing them with differ-
ent faces, a monospaced font which comes with italic, bold and bold italic versions is
recommanded. In this document theLetter Gothic 12 Pitch7 font family from Bit-
stream is used for source listings because it is narrower thenCourier , the standard
Postscript monospaced font family.

Unfortunately, for the computer modern typewriter family there are no bold and bold
italic series available by default. There exists a bold version of the computer modern
typewriter font (see [cmbtt]), but probably you will have to install it yourself.

Recently, with the release of Version 4.2 of XFree86, the free implementation of the
X Windows System, the new, freely distributable monopsaced font familyLuxiMono
became available. It is a Type 1 encoded Postscript font which comes with bold, italic
and bold italic versions. It can be downloaded from [LuxiMono].

7Letter Gothic 12 Pitch is a commercial font, but available on many CD ROMs bundled with print-
ers or DTP systems (for example CorelDraw).

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

D. HIGHLIGHTING SCHEME SOURCE CODE 24

C Highlighting XML source code8

Highlighting XML code is straight forward. The only
thing you have to do is setting thetypeoption of the
’\sourcebegin’ or ’ \sourceinput’ commands toxml.
Therefore this section is merely a demonstration of
how a ’.xml’ file will look like.

Listing 10: test.xml

<?xml version="1.0"?>

<?xgilf time-stamp="2F3A"?>

<!ENTITY test "and here we go">

<!ATTLIST xgilf lib type #REQUIRED>

<!-- a comment -->

<xgilf>

<!-- BEGIN RolEdd -->

<name>Roland < {} test</name>

<name>Edda, Ms. €</name>

<!-- END RolEdd -->

<!-- another comment -->

<empty att="1234" />

</xgilf>

Listing 11: test.xml[Line 11 to 12]

<name>Roland < {} test</name>

<name>Edda, Ms. €</name>

D Highlighting Scheme source code

Highlighting Scheme code is straight forward. The
only thing you have to do is setting thetypeoption of
the ’\sourcebegin’ and ’\sourceinput’ commands to
scm. Therefore this section is merely a demonstration
of how a ’.scm’ file will look like. Notice however
the comment style used in the Scheme source files. In
order to be recognized byProgDOC, comments can
begin with one to four semicolons.

Listing 12: doc/example.scm

;; BEGIN Factorial

(define factorial

(lambda (n)

(if (= n 1)

1

Listing 12: doc/example.scm(continued)

(* n (factorial (- n 1))))))

;; END Factorial

(string=? "K. Harper, M.D." ;; Taken from ←↩

Section 6.3.3. (Symbols) of the R5RS

(symbol->string

(string->symbol "K. Harper, ←↩

M.D.")))

;; BEGIN Square

(define square

(lambda (n) ;; My first lambda

(if (= n 0)

0

;; BEGIN Recursive Call

(+ (square (- n 1))

(- (+ n n) 1)))))

;; END Recursive Call

;; END Square

Notice that we used the command\renewcommand{ \pd-
CommentFont}{\bfseries\itshape} in order to set the
comment font of the listings beginning with Listing 12
to bold italic.

Listing 13: doc/example.scm[Line 14 to 21]

(define square

(lambda (n) ;; My first lambda

(if (= n 0)

0

<see Listing 14 on page 24 >

Listing 14: doc/example.scm[Line 19 to 20]
(Referenced inListing 13on page24)

(+ (square (- n 1))

(- (+ n n) 1)))))

8This and the following section not only demonstrate how to
highlight XML and Scheme source code, but also show how
ProgDOC can be used in two-column mode. The only dif-
ference between listings in the two-column mode set with the
twocolumn option of thedocumentclass command or inside
the document with the\twocolumn command and listings in
the multicols environment is the behavior of the listing cap-
tion. Because of incompatibilities between themulticols envi-
ronment and theafterpage package, the caption “Listing x:
... (continued)” on subsequent columns or pages is not sup-
ported for listings inside themulticols environment. If in the
twocolumn mode, columns are treated like pages for the caption
mechanism ofProgDOC. Thus the “Listing x: ... (continued)”
captions are repeated on the top of each new column on which
the listing spans, just as if it was a new page.

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

25 E. Highlighting ELisp source code

E Highlighting ELisp source code

Highlighting ELisp code is similar to highlighting Scheme code. You have to set the
typeoption of the ’\sourcebegin’ or ’ \sourceinput’ commands toel. For a comment in
order to be recognized as valid label, the same rules apply as stated for Scheme code.
Following we show how a highlighted ’.el’ file will look like. (The base font used for
the listing isCourier . It was specified with the option“fontname=pcr”.)

Listing 15: version.el

;;; version.el --- record version number of Emacs.

;;; Copyright (C) 1985, 1992, 1994, 1995 Free Software Foundation, Inc.

(defconst emacs-version "20.5" " \
Version numbers of this version of Emacs.")

(defconst emacs-major-version

(progn (string-match "ˆ[0-9]+" emacs-version)

(string-to-int (match-string 0 emacs-version)))

"Major version number of this version of Emacs.

This variable first existed in version 19.23.")

(defconst emacs-minor-version

(progn (string-match "ˆ[0-9]+\\.\\([0-9]+\\)" emacs-version)

(string-to-int (match-string 1 emacs-version)))

"Minor version number of this version of Emacs.

This variable first existed in version 19.23.")

(defconst emacs-build-time (current-time) " \
Time at which Emacs was dumped out.")

(defconst emacs-build-system (system-name))

(defun emacs-version (&optional here) " \
Return string describing the version of Emacs that is running.

If optional argument HERE is non-nil, insert string at point.

Don’t use this function in programs to choose actions according

to the system configuration; look at ‘system-configuration’ instead."

(interactive "P")

(let ((version-string

(format (if (not (interactive -p))

"GNU Emacs %s (%s%s)\n of %s on %s"

"GNU Emacs %s (%s%s) of %s on %s")

emacs-version

system-configuration

(cond ((featurep ’motif) ", Motif")

((featurep ’x-toolkit) ", X toolkit")

(t ""))

(format-time-string "%a %b %e %Y"emacs-build-time)

emacs-build-system)))

(if here

(insert version-string)

(if (interactive -p)

(message "%s" version-string)

version-string))))

...

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

REFERENCES 26

References

[Childs] Bart Childs“Literate Programming, A Practitioner’s View”
TUGboat, Volume 13, No. 2, 1992
available at: http://www.literateprogramming.com/farticles.html

[cmbtt] “A Bold Computer Modern Typewriter Font”, available at:
http://www.ctan.org/tex-archive/fonts/cm/mf-extra/bold

[CWeb] Donald. E. Knuth and Silvio Levy
“The CWEB System of Structured Documentation”
Addison-Wesley, Reading, Mass., 1993

[CWebx] by Marc van Leeuwen
available at: http://wallis.univ-poitiers.fr/˜maavl/CWEBx/

[DOCpp] by Roland Wunderling and Malte Zöckler
available at: http://www.zib.de/Visual/software/doc++/

[Doxygen] by Dimitri van Heesch, available at: http://www.doxygen.org

[fancyhdr] Piet van Oostrum“Page layout in LATEX” , available at:
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/fancyhdr.html

[funnelWeb] by Ross N. Williams, available at: http://www.ross.net/funnelweb/

[fWeb] by John Krommes, available at: http://w3.pppl.gov/˜krommes/fweb.html

[gawk] by the Free Software Foundation
available at: http://www.gnu.org/directory/gawk.html

[JDoc] James Gosling, Bill Joy and Guy Steele
“Java Language Specification”Addison-Wesley, 1996

[La2HT] by Nikos Drakos, Ross Moore and many others ...
available at: http://saftsack.fs.uni-bayreuth.de/˜latex2ht/
or: http://ctan.tug.org/ctan/tex-archive/support/latex2html

[LitProg] Donald E. Knuth“Literate Programming”
The Computer Journal, Vol. 27, No. 2, 1984

[listings] Carsten Heinz“The Listings package”, available at:
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/listings.html

[longtable] David Carlisle“The longtable package”, available at:
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/longtable.html

[LuxiMono] Walter Schmidt“The LuxiMono package”, available at:
http://www.ctan.org/tex-archive/fonts/LuxiMono

[multicol] Frank Mittelbach“An environment for multicolumn output”, available
at: ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/multicol.html

[noWeb] Norman Ramsey“Literate Programming Simplified”
IEEE Software, Sep. 1994, p. 97
available at: http://www.eecs.harvard.edu/˜nr/noweb/intro.html

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

http://www.literateprogramming.com/farticles.html
http://www.ctan.org/tex-archive/fonts/cm/mf-extra/bold
http://wallis.univ-poitiers.fr/~maavl/CWEBx/
http://www.zib.de/Visual/software/doc++/
http://www.doxygen.org
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/fancyhdr.html
http://www.ross.net/funnelweb/
http://w3.pppl.gov/~krommes/fweb.html
http://www.gnu.org/directory/gawk.html
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://ctan.tug.org/ctan/tex-archive/support/latex2html
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/listings.html
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/longtable.html
http://www.ctan.org/tex-archive/fonts/LuxiMono
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/multicol.html
http://www.eecs.harvard.edu/~nr/noweb/intro.html

27 REFERENCES

[nuWeb] by Preston Briggs
available at: http://ctan.tug.org/tex-archive/web/nuweb

[progDoc] by Volker Simonis, available at: http://www.progdoc.org

[RamMarc] N. Ramsey and C. Marceau“Literate Programming on a Team Project”
Software - Practice & Experience, 21(7), Jul. 1991, p. 667-683
available at: http://www.literateprogramming.com/farticles.html

[ShumCook] Stephan Shum and Curtis Cook
“Using Literate Programming to Teach Good Programming Practices”
25th. SIGCSE Symp. on Computer Science Education, 1994, p. 66-70

[TexB] Donald E. Knuth“The TEXbook”
Addison-Wesley, Reading, Mass., 11. ed., 1991

[Tex] Donald E. Knuth“TEX: The Program”
Addison-Wesley, Reading, Mass., 4. ed., 1991

[VanWyk] Christopher J. Van Wyk“Literate Programming Column”
Communications of the ACM, Volume 33, Nr. 3, March 1990. p. 361-362

[Web] Donald E. Knuth“Literate Programming”
CSLI Lecture Notes, no. 27, 1992 or Cambridge University Press

[webWeb] by Uwe Kreppel
available at: http://www-ca.informatik.uni-tuebingen.de/people/kreppel/

ProgDOC Tutorial, Version 1.14 (ProgDOC Rel. 1.3b) - March 4, 2003

http://ctan.tug.org/tex-archive/web/nuweb
http://www.progdoc.org
http://www.literateprogramming.com/farticles.html
http://www-ca.informatik.uni-tuebingen.de/people/kreppel/

	Some words on Literate Programming
	WEB and its descendants
	General drawbacks of WEB based literate programming tools
	New program documentation system

	Overview of the ProgDoc system
	The \sourceinput command
	Using ProgDoc in two-column mode
	Using the alternative highlighter pdlsthighlight
	The \sourcebegin and \sourceend commands
	The \sourceinputbase command
	The source file format
	Hiding code parts
	Displaying nested code sequences

	LaTeX customization of ProgDoc
	An example Makefile
	Acknowledgements
	Installing ProgDoc
	Requirements
	Compiling ProgDoc
	Installing ProgDoc
	Notes for LaTeX2HTML users

	Known Problems
	Using pdfLaTeX
	Using hyperref.sty
	Iconic references in the HTML version of the documentation
	Widow and club lines in listings
	Errors during the execution of pdweave
	Using extramarks.sty
	Chosing the right font for source listings

	Highlighting XML source code
	Highlighting Scheme source code
	Highlighting ELisp source code

